Assignment 2

1. Boiling point of liquid bromine and liquid hydrogen sulphide is +60 C and -60 C . Calculate the latent heat of vaporization per mole (Assume Trouton's Rule that Molar Entropy of vaporization is $85 \mathrm{~kJ} / \mathrm{M}$).
2. A solid of heat capacity $100 \mathrm{~J} / \mathrm{K}$ is allowed to cool from 100 C to 27 C in air. Calculate total entropy change (system + surrounding) assuming the heat capacity of the solid is constant.
3. Briefly justify the statement- "Molar Entropy change is of the order melting $<$ boiling $<$ sublimation."
4. 1 mole of a gas in a sealed container is taken from ground floor to the top of a 100 ft tower. Does it thermodynamic state change?
5. For isothermal expansion of an ideal gas $\mathrm{dE}=\mathrm{C}_{v} d \mathrm{~T}=0$. As a result, $\mathrm{Q}=\mathrm{W}$, i.e. heat is totally converted into work. Does it violate Second law of Thermodynamics?
6. Consider two chambers each containing 1 mole of ideal gas with kinetic energy (KE) distribution- $3000 \mathrm{~J}(50 \%), 4000 \mathrm{~J}(30 \%), 5000 \mathrm{~J}(10 \%), 6000 \mathrm{~J}(6 \%), 7000 \mathrm{~J}(4 \%)$. Calculate average KE and hence, temperature ($\mathrm{R}=8 \mathrm{~J}$). Suppose a ghost (Maxwell's Demon) picks up the molecules and rearrange them as follows - 100\% having KE 3000 J in one chamber and rest in other chamber. Calculate temperature of the two chambers. Is it possible to create such temperature differences?
7. Explain why Molar entropy of vaporization of water ($107 \mathrm{~kJ} / \mathrm{M}$) is higher than that of liquid bromine ($85 \mathrm{~kJ} / \mathrm{M}$).
