
 Chapter 3 

Thermodynamics - Introduction and the First law 

“A law is more impressive the greater the simplicity of its premises, the more different are 
the kinds of things it relates, and the more extended its range of applicability. (..) It is the 
only physical theory of universal content, which I am convinced, that within the 
framework of applicability of its basic concepts will never be overthrown.” A. Einstein 

Thermodynamics may be rightfully regarded as the crown jewel of theoretical sciences with reach 
and applications to every branches of physical, chemical, biological and engineering sciences. It 
may appear somewhat strange that such a universal theory grew out of a fairly mundane subject of 
estimating efficiency of a heat engine. Thermodynamics was developed between 1800-1850 during 
industrial revolution in Europe. This was just after James Watt perfected the steam engine in 1770-
s. The subject grew out of the challenge as to how to get maximum amount of work done by 
spending minimum amount of heat.   

Thermodynamics may be described in terms three laws, which in turn gave rise to our everyday 
concepts of internal energy, entropy, free energy, specific heat. In this and the next chapter, we 
present the developments of thermodynamics, both from a historical and conceptual basis. Our 
approach will be direct and minimalistic. 

1. Thermodynamics deals with inter-conversion of energies 

Thermodynamics, as the name suggests, deals with the inter-conversion of heat and 

mechanical work. In a machine (engine), the system absorbs heat to do work. The question is 

whether the work done (W) by a machine could be greater, equal or less than the heat 

absorbed (Q). The task of thermodynamics was to answer these questions. In a steam engine, 

heat is obtained from chemical energy (through burning of coal). 

 C + O2 = CO2 + Heat 

In human body, the source of heat is the burning of carbohydrates (glucose, C6H12O6). 

C6H12O6 + 6O2 = 6CO2 + 6 H2O + Heat 



Thus thermodynamics also addresses conversion of chemical energy into heat. The discovery 

of electricity and magnetism by Michael Faraday (1791–1867), expanded the scope of the 

                                                                                                  

James Watt, (1736-1819), a mechanical engineer, played a major role in ushering 
in the Industrial Revolution. He was not the first to invent the steam engine. He 
invented the most efficient steam engine. Since 1759, he started improving the 
Newcomen Engine (developed in 1712 by Thomas Newcomen). Watt obtained 
several patents on his engine between 1781 and 1784.  

Sadi Carnot, (1796-1832), who lived for only 36 years, is often regarded as the 
father of thermodynamics. He was a French military engineer and physicist.  In 
1824, he published only one monograph, “Reflections on the Motive Power of 
Fire.” Carnot gave the first successful theory of the maximum efficiency of heat 
engines. Carnot's work received little attention during his lifetime.  

James Joule (1818-1889), first demonstrated the heating effect of electric 
current. This contradicted Lavoisier’s caloric theory (that heat can neither be 
created nor destroyed) and hence, Joule faced severe criticism. Undaunted, Joule 
carried out a series of precise measurements, to establish the concept of inter-
conversion of energy and mechanical equivalent of heat. This led to the law of 
conservation of energy and first law of thermodynamics.  

                            

subject. Conversion of chemical energy into electrical energy became part of 

thermodynamics. Eventually, thermodynamics started dealing with inter-conversion of all 

forms of energy. 

1. Thermodynamics tells us what is possible 

Thermodynamics goes much beyond mere conversion of energies. It tells us what is possible 

or not. For instance, we know burning a carbohydrate (glucose or cellulose in paper) into 



CO2 and water is easy and can be done also outside our body (you can burn glucose in a gas 

burner). But can we do the opposite process namely, absorb CO2 and water from air and 

convert it into glucose? As you will see later, thermodynamics says it is not possible. If that 

be the case, how come the plants do it all the time during photosynthesis? Again note, 

glucose or paper does not burn in the presence of oxygen at room temperatures. Why do we 

have to heat them? 

Such questions are, perhaps, the most important issues (food and energy) facing human 

civilizations at all times. This is why a solid foundation of thermodynamics is needed to 

solve fundamental issues in all scientific subjects irrespective of the discipline. 

3.3 Thermodynamics is a logical and axiomatic science like geometry 

Thermodynamics is, in certain sense, similar to geometry. Geometry is based on a few 

axioms (e.g. two parallel lines cannot cross). All theorems or other propositions are derived 

or disproved on the basis of these axioms. In thermodynamics, there are three laws (plus the 

zeroth law which defines temperature) that serve as axioms. Anything which violates these 

three laws is not possible. It is therefore, essential to learn the laws, logic and language of 

thermodynamics. We begin with the concept of temperature and Zeroth Law. 

Zeroth Law: If two bodies are at thermal equilibrium i.e. there is no net heat flow between 

them, they must have identical value of one property. This property is known as temperature. 



4. System and Surrounding 

These terms have definite meaning in thermodynamics and it is important to be precise about 

them. 

 

    

  

               Figure 3.1 A thermodynamic system 

                                                                       

Let us consider a beaker containing water being heated by a gas burner. In this case our 

system is the beaker containing water (Fig. 3.1). It is getting heat from outside (i.e. the gas 

burner). As the water is getting heated water vapors escape our system and go outside. We 

call this outside world as surrounding. To be precise, a system is that part of the universe 



which is under our consideration. The rest of the universe is surrounding. We thus describe 

this demarcation as follows, 

System + Surrounding = Universe 

Or, Surrounding = Universe – System 

The system could vary from a small test tube containing a little water to as big as an entire 

galaxy containing many stars. Astrophysicists like S. Chandrasekhar (1910-1995) dealt with the 

latter systems. 

If the system can exchange matter (mass) with the surrounding we call it an open system. An 

open beaker containing water is an open system because the vapors can escape to surrounding. If 

the system cannot exchange mass with surrounding (e.g. a sealed container) we call it a closed 

system. A system is called isolated if it can exchange neither matter nor energy with its 

surrounding. 

4. Thermodynamic Variables and State of a System 

Thermodynamics involves most macroscopic properties of a system. All these properties depend 

on four fundamental properties- pressure (P), volume (V), temperature (T) and mass (or number 

of moles, n). These four fundamental properties are called thermodynamic variables. A set of 

values of these four properties define a given thermodynamic state of the system. Thus (P1, V1, 

T1, n1) and (P2, V2, T2, n2) describes two different thermodynamic states. Any thermodynamic 

property, X, is a function of these four variables and may be written as, 

X = f (P, V, T, n)   (1) 



So that,  

  (2) 

Properties like V that depends on mass are called extensive property. Those (e.g. P and T) which 

do not depend on mass are called intensive property. 

The number of variables reduces if there is a relation between the four thermodynamic variables. 

A relation between these four variables is called an equation of state. For a gas, there are several 

equations of state. For instance, for an ideal gas the equation of state is PV=nRT. Such an 

equation of state can be complex for solids and liquids. This is the reason why most of the 

thermodynamic issues are explained in terms of gases (in particular, ideal gases) because the 

mathematical formulation is lot easier. Sometimes this conveys a wrong impression that 

thermodynamics applies only to ideal gas! It is important to remember that thermodynamics 

applies to all kinds of gas, liquid and solid. 

5. First Law of Thermodynamics: Concept of Internal Energy, E 

The first law of thermodynamics is essentially conservation of energy and may be stated as 

follows, 

Energy can neither be created nor be destroyed but can be converted into other forms of energy. 



Let us consider that a system absorbs Q amount of heat from surrounding and does W amount of 

work. Then according to the first law the difference of Q and W must be stored inside the system 

in some form of energy. This is called the internal energy (E). Thus 

   dE = Q-W  (3)  

E is a property of the state and is a function of (P, V, T, n). In other words, E is a state function 

whose value depends on the values of P, V, T and n. We will see in the next section that Q and W 

is not a state function and their values depend on the path i.e. how the state changes. 

 It helps to remember that dE is the change in internal energy which is a state function. When 

work is done on the system, internal energy increases and contribution of W must be positive. On 

the other hand, when work is done by the system, W is negative as dE must be negative. 

6. Path: Reversible and Irreversible 

When a system goes from one state (P1, V1, T1, n1) to another state (P2, V2, T2, n2) there are 

multitude of ways in which the state variables (P,V,T and n) may change. A thermodynamic path 

is defined as the way the values of P, V, T and n changes in a four dimensional space. We will 

now show that the amount of work done depends on whether the change or path is reversible or 

irreversible. 

A reversible process is defined as the one that can be reversed easily. By necessity, this path is a 

sum of infinitesimal changes in the external conditions. An irreversible process, on the contrary, 

cannot be reversed by infinitesimal change in the external condition. 



 

To understand this let us consider crossing of a 2 meter barrier. An athlete will cross it by making 

a high jump (Fig. 3.2a). But he cannot change the direction of his motion at any point of his path. 

On the other hand, if we place a stair case one can reverse the direction of motion at any point 

during crossing the barrier (fig. 3.2b). For a truly reversible process, the height of each stair is 

infinitesimally small. 

3.6.1 Work done by expansion of a gas 

Let us now calculate the work done in going from (P1, V1, T1, n1) to another state (P2, V2, T2, n2). 

Let us consider that the gas is confined in closed cylinder by a piston of area A and external 



pressure Pext , with Pext < Pint (internal pressure). Obviously the gas will expand until the internal 

pressure decreases to be equal to external pressure.                                                                                           

                                                                       

 

Figure 3.3 Work done by expansion of a gas 

Force on the gas F= pressure x area = Pext x A 

If the piston moves over a small distance dl, work done  

!     (4) 

Where dV = A dl. 

a) Irreversible Work  
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In the case of an irreversible process, the external pressure (Pext) is kept constant and the gas 

expands in one step. Thus for an irreversible process, we can take the constant Pext out of the 

integration sign as follows  

!   (5) 

Obviously, the external pressure will be equal to the final pressure so that Pext=P2. Thus, 

  !        (6) 

b) Reversible Work  

In a reversible process, the external pressure is not constant. The whole expansion is 

carried out in multiple small steps each time decreasing the external pressure by a small 

amount. This ensures that the process can be reversed by slight change in external 

pressure. In this case,   

     !     (7) 

Thus the for an reversible process 

!    (8) 

The arguments presented so far is applicable to all gas, liquid and solid. We will now 

assume, for mathematical simplicity, that the system is one mole of an ideal gas so that 

! ,  

( )∫∫ ∫ −==== 12 VVPdVPdVPdWW extextextirrev

( )122 VVPWirrev −=

intPPext ≈

∫∫ ∫ ≈== dVPdVPdWW extrev int

RTVP =int



so that !   (9) 

Substituting the value of Pint from equation (9) into equation (8) we get 

!   (10) 

We now make a further assumption that the process is isothermal i.e. temperature does 

not change during expansion. Thus T1=T2=T (let). 

Then equation (10) simplifies to 

!    (11) 

Under this condition i.e. isothermal expansion of an ideal gas from equation (6) for an 

irreversible process. 

!   (12) 

Problem 1. Using equations (11) and (12) show that Wrev>Wirrev. 

From equations (11) and (12) it is obvious that work done in going from state (P1,V1, T) 

to (P2,V2, T) depends on the path and is different for reversible and irreversible processes. 

Difference in internal energy E between these two states are constant because E is state 
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function. Thus from equation (3) as dE is constant and W is path dependent, the heat 

absorbed Q=dE + W also depends on path.  

In summary, Q and W are both path functions and depend on the path, but they combine 

via Eq.3 to produce a state function. This is the main outcome of the first law. It is utmost 

important to realize that work done by reversible and irreversible processes are different. 

4. Heat Absorbed at constant volume is equal to dE 

From equation (3) 

      (13) 

in this equation we used a different symbol for change in Q and W to emphasize that they 

are path functions. If the change takes place at constant volume, dV=0. Then (15) reduces 

to 

dEV= dQv    (14) 

Here, the subscript, V, implies that the process takes place at constant volume. Eq.14 is an 

important conclusion. It says, if a process is isochoric (i.e constant volume) then the heat 

absorbed is equal to change in internal energy.  

In general, heat absorbed in a process is equal to heat capacity, C (amount of heat needed 

to raise temperature by one degree) multiplied by change in temperature (dT). 

  dQ= CdT  (15) 

extdE dQ dW dQ P dV= − = −



From (14) and (15) 

dEV = CV dT                        (16) 

The above equation  may be rewritten as 

!   (17) 

Equation (17) is an important and highly useful relation of thermodynamics. Note further 

the conclusions described by equations (15) and (17) are valid for all systems (gas, liquid 

or solid). 

5. Concept of  Enthalpy (H)  as the Heat Absorbed at Constant Pressure 

We just discussed the important result that the change in internal energy becomes equal to 

heat absorbed when the process occurs at constant volume.  However, most chemical 

reactions and also physical transformations, occur under constant pressure and volume 

does not remain constant. Therefore, we need to know which thermodynamic function 

represents the heat absorbed at constant pressure. This turns out to be an important state 

function, termed enthalpy.  We define enthalpy, H as follows 
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H=E + PV  (18) 

Obviously,  

 dH=dE + PdV + VdP                              (19) 

For constant pressure, dP=0  and Pext=Pint=P so that 

dH=dE + PdV 

 Now, PdV is the mechanical work due to volume change, and PdV =dWP.  

Thus using equation (3) we obtain 

dH =dE + dWp = dQP   (20) 

 This is another important relation. It says that for an isobaric process (i.e. constant 

pressure) the heat change is equal to change in enthalpy. If dHP (=dQP) is positive heat is 

absorbed by the system and the process or chemical reaction is endothermic. On the other 

hand, if dHP (=dQP) is negative heat is released by the system and the process or chemical 

reaction is exothermic. In analogy to equations (15) to (17) one can write, 

dHP = Cp dT   (21) 

and !    (22) 
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Where, CP denotes heat capacity at constant pressure. Again note, equations (21) and (22) 

are applicable to solid, liquid and gases. 

9. Relation between CP and CV  

Since E is a state function, it depends on P, V, T and mass. Thus one can write for 

constant mass, 

E=f(P, V, T, n) (23) 

For a fixed mass, n is constant. Thus 

    E= f(P,V,T) (24) 

At constant pressure,   

    E= f(T,V) 

Thus     dE= (dE/dT)V dT + (dE/dV)T dV (25) 

Then using equation (17) we obtain 

dE= CVdT  + (dE/dV)T dV  (26) 

 From equation (13) we obtain 

    dQ= dE + Pext dV= CVdT + (dE/dV)T dV + Pext dV      (27) 



At constant pressure, Pext= P, equation (27) may be rewritten as 

    dQP = CVdT + [P + (dE/dV)T] dV  (28) 

We divide both sides by dT and noting P is constant 

    CP= (dQ/dT)P= CV + [P + (dE/dV)T] (dV/dT)P (29) 

Except in the case of anomalous expansion of water between 00-40C for all materials with 

increase in temperature volume increases and hence, (dV/dT)P>0 

Thus, 

     CP > CV     (30) 

 The above inequality is valid universally and also from fundamental theory of 

thermodynamic fluctuations. Energy fluctuations are larger at constant pressure than at 

constant volume. However, this discussion is beyond the scope of this chapter. 

10. Value of (dE/dV)T for an ideal gas: Joule’s Law 

In order to determine (dE/dV)T for an ideal gas, James Joule (1818-1889) carried out a 

careful experiment in 1840s (fig). 



 

The apparatus consists of two vessels A and B connected by stop cock. Joule filled A 

with an ideal gas and evacuated B so that in B, pressure P=0. He then immersed the 

apparatus in reservoir of water. He opened the stopcock suddenly so that the gas in A 

undergoes irreversible expansion against zero pressure (Pext=0). Under this condition 

equation 27 becomes  

dQ= CVdT + (dE/dV)T dV  (31) 

Joule very carefully measured the temperature of the water in the reservoir and found 

that there is no change in the temperature !  That is,  dQ=0 and dT=0. 

Let us analyze this result in more detail. If both dQ and dT are zero in equation (31), 

we have 

    (dE/dV)T dV = 0 

Thermometer



Since dV≠ 0,   we have the result that   

 (dE/dV)T = 0  (32) 

Equation (32) provides a mathematical definition of an ideal gas. According to 

equation (32) for an ideal gas there is no change in internal energy when an ideal gas 

expands (dV>0) at constant temperature. This is known as the Joule’s Law.  

This is clearly due to the absence of inter-molecular attraction in an ideal gas. Thus no 

external energy is needed to be supplied to increase distance between the molecules 

during expansion. 

However, for all materials (real gas, liquid and solid) there is appreciable inter-

molecular attraction. Thus for real systems, energy needs to be supplied for expansion 

if temperature to be kept constant. If we do not supply energy from outside during 

expansion the system will have to do work against the attractive force and this will 

result in a decrease in E and in temperature. In summary, for systems having 

intermolecular attraction 

    

(dE/dV)T >0  (33)  



11. Relation between CP and CV for an ideal gas 

We just discussed that for an ideal gas, 

   (dE/dV)T =0 

Further, for one mole of an ideal gas, PV=RT, so that (dV/dT)P = R/P  (34) 

Thus from equation (29), we obtain  for one mole of an ideal gas 

     CP = CV + R  (35) 

Or, CP – CV = R.  

The ratio of CP and CV is known as γ,  

                                       γ=CP/CV    (36) 

Since CP>CV,   

γ>1 

12. Adiabatic processes 

An adiabatic process is defined as one which does not involve exchange of heat with 

surrounding i.e. dQ=0. For an adiabatic process the system is thermally insulated 

from the surrounding. Otherwise the process is done is very quickly (suddenly) so 

that there is no time for heat flow. Thus for an adiabatic process, equation is written 

as 



   dE=-dW  (37) 

for ideal gas dE=Cv dT so that (35) becomes 

   dW= - CvdT  (38) 

For expansion of an ideal gas dW=PextdV>0. Then from equation (36) dT<0. Thus 

during an adiabatic expansion, temperature of an ideal gas decreases. Conversely, 

during adiabatic compression, temperature of an ideal gas increases. 

13. Reversible adiabatic process for an ideal gas: PVγ=constant 

Let us consider one mole of an ideal gas undergoing a reversible adiabatic change 

from state (P1,V1,T1) to (P2,V2,T2).  We use the formula for reversible work (with 

Pext=Pint ) in equation (38) to obtain 

Pint dV =- CVdT            (39) 

For one mole of an ideal gas equation, Pint=RT/V. Therefore, (39) becomes 

             RdV/V=-CVdT/T      (40) 

Integrating equation (40) from initial state (V1,T1) and final state (V2,T2) 

Rln(V2/V1)= -CVln(T2/T1)= CVln(T1/T2) 

Or,  (V2/V1)R = (T1/T2)Cv  

Or,  (T1/T2)  = (V2/V1)R/Cv               (41) 



Since R = CP - CV, and  from equation (34) R/Cv=γ-1, 

Thus from (41) 

T1V1γ-1= T2V2γ-1               (42) 

For ideal gas T1=P1V1/R and T2=P2V2/R  

Thus from equations (41) and (42),   we obtain 

P1V1γ = P2V2γ                              (43) 

Thus for a reversible adiabatic process of one mole of an ideal gas 

PVγ= constant  (44) 

On the other hand, at constant temperature (i.e. for an isothermal process) for an ideal 

gas, according to Boyle’s Law, 

    PV= Constant  (45) 

According to equation (44) for an adiabatic process, P is inversely proportional to Vγ 

and from equation (45) for an isothermal process, P is inversely proportional to V. In 

both cases, P decreases with increase in V. However, since γ>1, P decreases faster in 

the case of adiabatic process. The P-V curve for an ideal gas in the two cases are 

shown in figure ?. 



 

 

14. Joule-Thompson expansion: An iso-enthalpic process 

 

In 1852, James Joule and William Thomson (also known as Lord Kelvin, 1824-1907) 

carried out an important experiment on irreversible adiabatic expansion of a gas 

through a porous wall (“throttling”). For most gases, this causes substantial cooling of 

a gas resulting in liquefaction of gases. In this experiment, a gas is confined in a 

thermally insulated chamber and held on one side by a piston of pressure P1 against a 
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porous wall. On the other side of the wall there is another piston of pressure P2 with 

P2<P1. Let the initial volume is V1. The left piston rapidly and irreversibly pushes the 

gas through the hole into the other chamber so that the final volume of the gas is zero 

in the left chamber. 

Thus the irreversible work done by left piston is WL = Pext(0-V1)=-P1V1  (44) 

In the case of the right piston, Pext=P2, initial volume is zero and final volume is V2 . 

Thus the work done on the right piston  

WR=P2(V2-0)= P2V2       (46) 

Thus the total work done is 

 W=WL+WR= P2V2- P1V1    (47) 

Let the initial internal energy of the gas is E1 and final internal energy is E2 so that 

change in internal energy = E2 - E1   (48) 

From equation (3) since for Joule-Thompson process is adiabatic, Q=0, 

Thus dE=-W and hence from equations (47) and (48) we get 

    E2-E1= P2V2- P1V1  

Or,  E2+ P2V2=E1+ P1V1 

Or,  H2 = H1     (49) 



In other words, final enthalpy equals initial enthalpy. Thus, during Joule-Thompson 

expansion enthalpy remains constant i.e. the process is iso-enthalpic. Note that this 

conclusion is valid irrespective of whether the gas is real or ideal.   

In Joule-Thompson expansion change in pressure, dP=P2-P1<0 i.e. negative. The 

change in temperature dT depends on the overall sign of the Joule-Thompson 

coefficient, µJT which is defined as, 

    µJT= (dT/dP)H    (50) 

The subscript H indicates the iso-enthalpic condition. Evidently, dT is negative if 

µJT>0 (i.e. positive) and this results in cooling of the gas. if µJT<0 (i.e. negative), dT is 

positive and as a result heating occurs during Joule-Thompson expansion. The value 

of µJT depends on the nature of the gas and the initial temperature.  

At room temperature, for hydrogen and oxygen Joule-Thompson expansion causes 

tremendous increase in temperature leading to explosion. However, if hydrogen and 

oxygen are initially cooled down below a certain temperature (called inversion 

temperature) they also cool like all other gases during Joule-Thompson expansion. 

We will later derive an expression for the value of if µJT. 

15. Carnot Cycle: Efficiency of an engine 



An engine converts absorbed heat into useful work. In an engine, the system 

undergoes a cyclic process in which the final state is same as the initial state so that 

there is no change in the system, and the cycle is repeated.  If such a cyclic machine 

absorbs Q amount of heat and does W amount of work, the efficiency (ε) is defined 

as, 

   ε=W/Q   (51) 

 Naturally one aims for an engine with high efficiency. Ideal case will be an engine 

with efficiency unity but that is not possible. But one can look for an engine with 

maximum efficiency. Such a machine was conceived by Sadi Carnot (1796 –1832).  

In Carnot cycle, the system consists of one mole of an ideal gas. It undergoes, 

following four reversible steps. 

a) Reversible isothermal expansion at temperature T1 from the state A (P1,V1,T1) to 

the state B (P2,V2,T1).  

For this reversible step, work done, W1=RT1ln(V2/V1)  (52) 

Since the system is an ideal gas, dE=CVdT=0 

 As a result, heat absorbed Q1=dE + W1= W1= RT1ln(V2/V1)             (53) 

The heat (Q1) is supplied by a source (called a heat reservoir or bath) which is so 

large that its temperature (T1) does not change after the transfer (fig). 



 

 

b) In the next step, the system under goes reversible adiabatic expansion during 

which the temperature drops from T1 to T2 as the system goes from state B 

(P2,V2,T1). to state C (P3,V3,T2). In this case,   Q=0 so that, 
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Work done  W2=-dE=-Cv(T2-T1)               (54) 

For this adiabatic process,  T1V2γ-1 = T2V3γ-1 

Or,     T1/T2 =(V3/V2)γ-1   (55) 

c) The third step is reversible isothermal compression at temperature T2 from the 

state C (P3,V3,T2) to the state D (P4,V4,T2).  

In this step, work done, W3=RT2ln(V4/V3)  (56) 

Since the system is an ideal gas, dE=CVdT=0 

 As a result, heat absorbed Q2 ‘=dE + W3 

                                                                              = RT2ln(V4/V3)= -RT2ln(V3/V4)     (57) 

Since V3>V4, Q2 is negative i.e. heat is given out from system. In this case the 

heat is given  to a sink (a heat reservoir). Let us write the heat released 

   Q2=-Q2’= - W3    (58) 



d) In the fourth step, the system undergoes reversible adiabatic compression when 

temperature decreases from T2 to T1 and the system goes from D (P4,V4,T2) back 

to initial state A(P1,V1,T1). In analogy to equation (55) 

W4=-dE=+Cv(T2-T1)  (59) 

While from equation (55), T2V4γ-1 = T1V1γ-1 

Or,     T1/T2 =(V4/V1)γ-1 (60) 

From (55) and (60),  (V3/V2)γ-1= (V4/V1)γ-1, 

Or    (V3/V4) = (V2/V1)  (61) 

The total work done in the Carnot Cycle, W = W1 + W2 + W3 + W4 

   Thus W=Q1-Q2   (62)        

Or,   W= (T1-T2) Rln(V2/V1)            (63) 

Thus,  the efficiency of the engine is obtained by,  

ε = (total work done)/heat absorbed 

   = W/Q1 

or, ε= (T1-T2)/T1= 1 - (T2/T1)  (64) 



One can also rewrite (64) as 

   ε= 1 - (Q2/Q1)    (63) 

According to equation (64) or equation (62), ε<1 i.e. total work done (W) is less 

than heat absorbed (Q1) because T2≠0 (according to third Law of 

thermodynamics). From equation (60), a part (Q2) of the total heat absorbed (Q1) 

can not be converted into work. 

Finally, it should be emphasized that the maximum efficiency of Carnot engine is 

due to the reversible processes invoked in each step. If any of the steps is 

irreversible, the efficiency will decrease. 

Problem 2. Draw the H against T curve for the Carnot cycle. 

Problem 3. Suppose, the source and sink are not large reservoirs so that their 

temperature changes every time heat is absorbed and released by the system. 

Show in this case the final temperature of both the source and sink is √(T1T2). 


