
Chapter 4 

     Second Law of Thermodynamics: Concept of Entropy  

 “The law that entropy always increases, holds, I think, the supreme position among the laws of 

Nature. If someone points out to you that your pet theory of the universe is in disagreement 

with Maxwell's equations — then so much the worse for Maxwell's equations. If it is found to be 

contradicted by observation — well, these experimentalists do bungle things sometimes. But if 

your theory is found to be against the second law of thermodynamics I can give you no hope; 

there is nothing for it but to collapse in deepest humiliation.” Sir Arthur S  Eddington 

 

While the first law of thermodynamics defines a relation between work and heat, in terms of 

internal energy, the second law of thermodynamics provides an expression for the maximum 

amount of energy available for work. The thermodynamics functions, entropy and free 

energy, those arise from the second law of thermodynamics play pivotal role in all branches 

of pure and applied science (physics, chemistry, biology and materials science). In this 

chapter, we discuss the statements and consequences of the Second Law of Thermodynamics. 

2.1	Second	Law	of	Thermodynamics	
	

The efficiency of Carnot cycle gives an indication that heat cannot be converted totally into 

work. However, there are many other cyclic machines consisting of different systems (not an 

ideal gas) and involved steps can be quite different from Carnot cycle. Is it possible for any of 

them to convert heat totally into work? After considering this question for many years, 

around1850 several scientists reached the conclusion that it is not possible and formulated the 

second law of thermodynamics as follows. There are two apparently different but actually 

equivalent statements of the second law. 



	

Rudolf Clausius (1822-1888), a German physicist, is a pioneer in 

thermodynamics. In 1850, he showed that there was a contradiction 

between Carnot's principle and the first law. This led him to propose the 

Second Law of thermodynamics. In 1865, he proposed the concept of entropy. 

 

William Thomson (Lord Kelvin, 1824-1907), after whom the unit of absolute 

temperatures is named, first determined the correct value of absolute zero as 

approximately −273.15 Celsius (earlier estimated to be −267 Carnot). He 

formulated the Kelvin-Planck statement of Second law of thermodynamics  

 

 Max Planck (1858-1947), the founder of quantum theory, was deeply inspired 

by Clausius. His Ph. D. thesis (On the second law of thermodynamics, 1879) 

and his famous book, Treatise on Thermodynamics (1897) deeply influenced 

the development of the subject.  

 

 

Second Law: Kelvin-Planck statement 

“It is impossible for a cyclic machine to convert heat totally into work without producing 

change elsewhere in the universe.” 

  

Second Law: Clausius statement 

“It is impossible for a cyclic machine to transfer heat from low temperature  to high temperature 

without producing change elsewhere in the universe.” 

A third statement popularly referred to as the second law is given as: 



 “The entropy of the universe always increases as it evolves toward the thermodynamic 

equilibrium, a state with maximum entropy.” 

However, this popular statement should not be regarded as an original statement of the second 

law. We show below that this third statement is a corollary of the Clausius statement, and need 

not be included as a formal statement of the second law. 

 

Equivalence of the two statements 

We will now show that the two statements are equivalent. 

a) We will first show that if Clausius statement is untrue then Kevin-Planck statement is also 

untrue. To prove this let us assume Clausius statement is untrue. Then one can  transfer heat 

from low temperature to high temperature without causing any change elsewhere. . Then let the 

sink and the source in a cyclic machine (e.g. Carnot cycle) are connected by a conductor of heat. 

Then every time the machine gives out Q2 heat to sink we can transfer it to the source.  

Then the net amount of heat absorbed from source reservoir= Q1-Q2  

and   the net amount of heat change at the sink = 0 

Then whatever amount of heat (Q1-Q2)  is absorbed from the source may be totally converted 

into work (since there is no heat loss to the sink) without producing any change elsewhere. This 

however violates Kelvin-Planck statement! Thus we have proved that if Clausius statement is 

untrue then Kelvin-Planck statement is also untrue.  

Note, if Clausius statement is untrue, one can transfer heat from a refrigerator to a stove. This 

will keep the refrigerator perpetually cool and the stove perpetually hot without needing any 

external source of energy (e.g. electricity or gas). Such an impossible machine (stove-



refrigerator) is called a perpetual machine of the second kind. A lot of effort was made at one 

point of time to invent such a machine but none succeeded. 

b) Let us now show that if Kelvin-Planck Statement is untrue than the Clausius statement is also 

untrue. 

Let us operate a machine in the reverse direction. Instead of absorbing Q1 heat from source, 

doing W amount of work and releasing Q2 heat to sink, let the machine absorbs Q2 heat from 

sink and some external agency does W amount of work on the system. Note, work can be totally 

converted into heat without violating any law. Thus let this W work be fully converted into heat. 

Then the system would transfer Q1=W+Q2, heat to the hot source. This is equivalent to 

transferring Q2 amount of heat from the cold sink (at temperature T2) to the hot source 

(temperature T1>T2), without causing any change elsewhere!. This violates Clausius statement. 

Thus if Kelvin-Planck Statement is untrue than the Clausius statement is also untrue. 

 

2.2 Carnot Theorems 

First Theorem: All reversible engines have same efficiency.  

Proof: Let us consider two reversible machines operate between a heat source reservoir at 

temperature T1 and a sink reservoir at temperature T2. Let their size be so adjusted that both 

release Q2 amount of heat to the sink. Let the first and the second machine absorbs Q1 and Q1’ 

heat from the source reservoir, respectively. Then the efficiencies of the first and second 

machines are given ,respectively, by 

   ε1 = 1-  Q2 / Q1   (2.1) 

   ε2 = 1-  Q2 / Q1′   (2.2) 

Q1 may be less than, greater than or equal to Q1’.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the machines are reversible let us assume that the second machine operates in the reverse 

mode i.e. it takes Q2 from sink and give Q1’ to the source. In this case, there is no change of heat 

content in the sink.  

The net amount of heat absorbed from source = Q1 - Q1’    (2.3) 

If Q1 - Q1’  > 0,  i.e. the difference is positive,  then the composite machine which absorbs Q1 - 

Q1’  heat from source would convert it totally into work, as there is no loss to the sink. This will 

violate the second law. 

Therefore, Q1 - Q1’ can not be positive i.e. Q1  cannot be greater than Q1.’  
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If Q1 - Q1′  is less than zero, let us operate the first machine in the reverse mode it would absorb 

Q2 from sink while the second machine would release Q2 to the sink. Then net heat change at 

source is Q1′ - Q1. If   Q1′ - Q1 is positive that will violate second law. So   Q1′  cannot be greater 

than Q1,  i.e.,  Q1  cannot be less than Q1′. 

In summary, Q1  cannot be neither less nor greater than Q1′. Thus the only possibility is 

  Q1= Q1′   (2.4) 

From 2.1 and 2.2,  ε1 = ε2   (2.5) 

Thus both the reversible machines must have the same efficiency. Note, since all reversible 

machines must have the same efficiency, we may assume their efficiency is same as that of the 

Carnot cycle. Therefore, we can write 

Efficiency of any reversible engine, εrev =1-  Q2 / Q1 = 1- T2 / T1  (2.6)  

 

Second Theorem: Efficiency of a reversible engine is greater than that of an irreversible 

machine.   

Proof: Let us consider two machines operating between a source reservoir of temperature T1 and 

a sink reservoir of temperature T2. Let their size be so adjusted that both release Q2 amount of 

heat to the sink. Let the first and the second machine absorbs Q1 and Q1′  heat from the source 

reservoir. Also let the first machine is reversible while the second one is irreversible. Then the 

efficiencies of the reversible and irreversible machines are respectively,  

   εrev = 1-  Q2 / Q1   (2.7) 

   εirrev = 1- Q2 / Q1′              (2.8) 



Q1′ may be less than, greater than or equal to Q1′. Since the first machine is reversible let us 

assume that it operates in the reverse mode i.e. it takes Q2 from sink and give Q1 to the source. In 

this case, there is no heat change at the sink.  

The net amount of heat absorbed from source = Q1 ′- Q1     (2.9) 

If Q1′- Q1  > 0, i.e. positive, then the composite machine which absorbs Q1 - Q1′ heat from 

source would convert it totally into work because there is no loss to the sink ! This will violate 

the second law. So, Q1′  cannot be greater than Q1.  

Again Q1′ cannot be equal to Q1 because that would imply the effect of an irreversible machine is 

completely negated by a reversible machine.  

Eliminating these two possibilities, Q1′ must be less than Q1. Then from (2.7) and (2.8) 

     εrev>εirrev  (2.9) 

Hence from (2.8) and (2.9) 

εirrev=1- Q2, irrev / Q1, irrev < 1- T2 / T1    

                                         Or,  Q2, irrev / Q1, irrev < T2 / T1   (2.10) 

 

2.3 Clausius and the concept of entropy: 

For a reversible machine, equation (69) may rewritten as  

Q2 / Q1 = T2 / T1   

Or, (Q1 / T1) + (-Q2 / T2) = 0  (2.11)  

 

Note, -Q2 denotes the heat absorbed by the sink reservoir. Thus we can say that for any 

reversible cycle, sum of heat absorbed divided by temperature is zero.  

Thus for a reversible cycle, Cyclic integral dQrev /T=0  (2.12) 



Equation (2.12) prompted Rudolf Clausius (1822–1888) to propose in 1865 that dQrev /T 

represents a new property of state. He called it entropy (S) and defined entropy as 

dS= dQrev /T     (2.13) 

 

2.4 Entropy is a state function (Saha-Srivastava, p. 245) 

This can be proved in the following way. The efficiency of a reversible heat engine operating 

between heat baths at temperatures T1 and T2,  with Q1 is the heat absorbed at T1 and Q2 as the 

heat released at T2 (the same notation as employed above and throughout this chapter) is given 

by two alternative expressions 
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We can eliminate efficiency ε from above equations to obtain 
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This can be rearranged to obtain 
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Since an engine is a cyclic process, we can write the above as 

  0revdQ
T

=∫j  

Thus, the above equation satisfied the condition of a state function that the sum over a cycle that 

brings the engine to its initial state must be zero, the quotient revdQ
T  is a state function, and called 



the entropy function, revdQ
T  is the change in entropy when dQrev quantity of heat is absorbed at 

temperature T 

revdQdS
T

=  

The above proof that entropy is a state function can be made more general by following the same 

procedure used above where a second engine is added to the first engine, and then look for a 

contradiction to the second law.  

2.5 Total entropy change in a reversible process: 

Let a system goes from state A to B by a reversible process (path II) in which the system absorbs 

dQrev heat from the surrounding (source) at a temperature T.  

Obviously,  entropy change of system, dSsystem = dQrev/T    (2.14) 

Note, since dQrev flows from surrounding to system,   

  Heat absorbed by surrounding = - dQrev 

As a result,   entropy change of surrounding, dSsurrounding= -dQrev/T (2.15)    

Combining (2.14) and (2.15), 

 In this case, total entropy change, of the universe for a reversible process,  

        dStot = dSsystem + dSsurrounding = dQrev/T  - dQrev/T  = 0             (2.16) 

Thus, we have an important result that the total entropy change of the universe during a 

reversible process is zero. 

 

2.6 Irreversible process     

Let us now consider that a system goes from state A to state B in an irreversible process (path I) 

B by absorbing dQirrev heat from the surrounding (source) at a temperature T. Let the same 



system also goes from state A to B also by a reversible process (path II) in which the system 

absorbs dQrev  heat from the  surrounding (source) at a temperature T.  

Obviously, dSsystem= SB-SA= dQrev/T   (2.17) 

 

Let us now reverse the reversible path II so that the system now absorbs –dQrev in the reverse 

process. In this cycle (path I plus reverse of path II), 

The total heat absorbed by the system= dQirrev–dQrev                     (2.18) 

Now dQirrev–dQrev≠0, because that would mean that the effect of irreversible path is compensated 

by a reversible path. 

Again,  dQirrev–dQrev  can not be positive (>0) because that would imply that in this cycle there is 

a net absorption of heat which must have been totally converted to work. This will violate second 

law.  

Then the only alternative is, dQirrev–dQrev<0 

Or, dQirrev – TdSsystem <0 

Or, dSsystem > dQirrev/T  (2.19) 

 

2.7 Clausius inequality: 

Combining Equations (2.16) and (2.19) we can write that  

dSsystem ≥ dQ/T   (2.20) 

The relation (2.20) is known as Clausius Inequality where the equality corresponds to a 

reversible process and the greater than sign applies for irreversible process. Clausius Inequality 

plays a highly important role in the subsequent developments of thermodynamics. As we show 



later, this inequality, under appropriate conditions, give rise to statements about stability of 

systems through changes in free energy of the system. 

The Clausius Inequality, has been, from the time of its inception, has also been subject of 

countless discussions as it seem to provide a direction of change, the oft quoted “arrow of time”, 

as discussed below. 

 

2.8 Entropy Change of the Universe  

As the system goes from state A to state B in an irreversible process B, let dQ heat from the 

surrounding (source) at a temperature T. Now, the surrounding is such a big reservoir that there 

is no difference in heat absorbed in reversible of irreversible process. Thus for the surrounding 

for both reversible and irreversible process 

    dSsurrounding= -dQ/T  (2.21) 

        Substituting this in (82) we can write,          dSsystem ≥  - dSsurrounding 

 Thus, for an irreversible process, dSsystem + dSsurrounding ≥ 0 

 Thus, the total entropy change of the universe, 

    dSsystem + dSsurrounding ≥ 0   (2.22) 

In (84) the equality corresponds to a reversible process while the greater than sign applies for 

irreversible process. In the universe always some irreversible processes occur. Thus one can say 

that entropy of the universe is continuously increasing. Thus this statement is a corollary to the 

second law. 

 

 

 



2.9 Entropy is a measure of unavailable energy  

Let in a Carnot cycle, system absorbs Q heat from the source (high temperature reservoir) at a 

temperature T1 and gives heat to the sink (low temperature reservoir) atT0. Then from the 

definition of efficiency of Carnot cycle. 

W = Q1 (1-T0/T1) (2.23) 

Evidently, a part of the total heat absorbed from source (Q) is not converted into work. This is 

known as unavailable energy. 

Thus unavailable energy, Wunavail =  Q – W= QT0/T1 (2.24) 

Let, the source transfers an identical amount of heat Q to another reservoir of temperature (Tx) 

where T1 > Tx >T0. Let us consider, a Carnot cycle operates between Tx and T0. For this cycle, in 

analogy to equation (2.24), the unavailable energy, 

Wunavailʹ =  QT0/Tx   (2.25) 

 Since, T1 >Tx,  Wunavailʹ > Wunavail. Subtracting (2.24) from (2.25), the increase in amount of 

unavailable energy because of transfer of heat Q from reservoir of temperature T1 to reservoir of 

temperature Tx is 

ΔWunavail = T0 (Q/Tx - Q/T1)  (2.26) 

The increase of entropy for transfer of heat Q from reservoir of temperature T1 to reservoir of 

temperature Tx is given by 

  ΔS=(Q/Tx - Q/T1)  (2.27) 

From (2.26) and (2.27) 

Increase in unavailable energy = T0 ΔS  (2.28) 

Evidently, the higher is increase in entropy the more is the amount of unavailable energy. Thus 

Entropy is a measure of unavailable energy. 



 

2.10 Entropy change of an ideal gas: reversible process  

From equation (3) dE=dQ-dW=dQ-Pext dV 

For an ideal gas, dE=CVdT  

For a reversible process, dQ=TdS and Pext=Pint=P=RT/V (for one mole) 

Thus CvdT=TdS- (RT/V) dV 

Thus dS= (Cv/T) dT + (R/V) dV 

Integrating between (V1, T1) and (V2, T2) 

ΔS=CV ln (T2/T1) + R ln (V2/V1)   (2.25)  

 

Problem: Draw S versus T curve for the Carnot Cycle. 

 

2.11 Entropy change of other processes 

a) Entropy Change during vaporization at boiling point: Trouton’s rule  

Let us consider evaporation of a liquid at the boiling point. If Lvap denotes the latent heat of 

vaporization per mole and TB, the boiling point in absolute scale, under one atmosphere (1 atm) 

pressure the entropy change during this process 

ΔSvap = Lvap /TB  (2.26) 

The quantity given by equation (2.26), is called standard molar entropy of vaporization at boiling 

point It is observed for a large number of liquids, the standard molar entropy of vaporization at 

boiling point, given by equation (2.26), is approximately same (around 85 J K-1 M-1). This 

empirical rule is called Trouton’s Rule. 

 



Problem: Given that the boiling point of water and liquid bromine 1000 C and 59.20C, 

respectively, calculate latent heat of vaporization of water and liquid bromine. 

 

b) Entropy change of a solid under constant pressure 

Let us consider a solid being heated from T1 to T2 at constant pressure 

ΔSP = ∫dQP /T= ∫CPdT/T= CP ln (T2/T1) (2.27) 

In equation (89) we have assumed that the CP is constant. 

In general, for a wide range of temperature CP is given by 

CP= b + cT  (2.28) 

Near absolute zero (00K or -2730 C) CP is found to be proportional to T3. This is known as Deby 

extrapolation. 

 Thus for temperatures between  00 K at Tʹ,   CP = aT3  (2.29) 

 

 Combining (2.27-29) for a solid below its melting point 

  

 ΔSP =   ∫aT2 dT + ∫bdT + ∫cdT 

 Or S (T) – S (0) = (a/3) Tʹ3 + b ln (T/Tʹ) + c (T-Tʹ) (2.30) 

 

Problem: Consider one mole of a solid at its melting point (Tm). Calculate entropy change 

of melting and subsequent heating of the liquid under constant pressure up to a 

temperature, T<TB (boiling point).  

 

 



2.12 Entropy is measure of disorder in a system 

Let us consider that a system consists of N number of molecules which are distributed among  

energy levels ε1, ε2, ε3 … such that n1, n2, n3, … molecules are in energy levels  ε1, ε2, and so on, 

respectively. When the number of molecules N and the number of energy levels both are large,  

one can achieve this distribution in a large number of ways. The total number of such 

arrangements or complexions are called thermodynamic probability, Ω. Obviously, Ω is given 

by, 

Ω  = NCn1
 N-n1Cn2 N-n1-n2Cn3…. 

= (N!)/ (n1!) (n2!) (n3!) (n4!)  (2.31) 

Since, N is an exceedingly large number of the order of Aavogadro Number and the populations 

of individual energy levels (n1, n2….) are very small,  Ω, is a very large number. Ω is measure of 

disorder of the system. Entropy is related to Ω  by the equation, 

 S = k ln Ω    (2.32) 

  From (2.32) the greater is disorder in the system, the larger is Ω  and the higher is entropy.    

Thus 

   Entropy is measure of disorder in a system. 

Special Topics 

1. Entropy and concept of negative temperature 

Since TdS= dQrev=dE+ PdV 

At constant volume TdSV=dEV 

Thus (∂S/∂E)V =1/T   (2. Xy) 



If there are infinite energy levels, with increase in E, Ω increases and hence entropy, S (=k ln Ω) 

increases. Thus T is always positive from (2.xy). 

However, for a system with finite levels (a two level system figure 2) Ω decreases with increase 

in E. In such a case, one can achieve a negative temperature. Population inversion in lasers is 

another example of formal negative temperature (to be discussed in chapter ??). 

 

2. Cryogenics: Cooling to very low temperature  

Using Joule-Thomson expansion (below inversion temperature) one can liquefy all gases. Liquid 

helium has a temperature 4 K. If liquid helium is evaporated by pumping one can go below 4K. 

However, at temperature below ?? helium becomes superfluid and produces a fountain like 

creeping over the container. This makes further cooling difficult. We will now discuss some 

novel methods of achieving very low temperature as low as mK (10-3 K) and nK (10-9 K) range.  

 

2.1 Adiabatic Demagnetization 

In paramagnetic substances with unpaired electron, each unpaired electron act as a tiny magnet 

of spin ± 1/2. The -1/2 spin (β state) and + ½ spin (α state) correspond to different orientations. 

In the absence of magnetic field, the two spin states have equal energy and will be equally 

populated (state A). As a result there will no net magnetization and the disorder (or entropy) of 

the system will be high. In the presence of a magnetic field, the state with -1/2 spin (β spin) is of 

lower energy and hence, more of the electrons would have β spin (state B). Thus there will be a 

net magnetization. As shown in fig 2, during magnetization from A to B net magnetic energy of 

the system (EM) decreases and the system releases a lot of energy as heat. This heat is absorbed 



by liquid helium surrounding the system so that the temperature is kept at 4 K. Thus the 

magnetization process is isothermal. 

Once the system reaches state B, the liquid helium is pumped out so that the system is now 

thermally insulated. Now the external magnetic is slowly and reversible reduced to zero. This is 

an adiabatic process. In this case, when the magnetic field is zero, the overall magnetic energy of 

the system increases. The increase in magnetic energy because of adiabatic demagnetization 

causes a decrease in thermal energy and hence, in temperature.  

 The disorder or entropy will be lower than that in absence of magnetic field.  

Since at low temperature (near 4 K) the entropy is given by T3 law let us assume the entropy in 

absence of magnetic field is aT3 and that in the presence of magnetic field as bT3. Evidently, 

a>b. From the S against T curve the system first goes isothermally from A to B. B to C is a 

reversible adiabatic process in which dS=0 but temperature drops. Thus if the temperature at B 

and C are T and Tʹ, respectively,  

Tʹ = (b/a) 1/3T 

Thus in each cycle the temperature drops. By repeating the cycle n the temperature drops 

enormously by a factor of (a/b)n/3. 

A typical sample for adiabatic demagnetization is Gadolinium (III) ion with many (seven) f-

electrons with parallel spin. If instead of electron spin one can make use of nuclear spin. One 

achieve better cooling and lower temperature in the case of nuclear spin. 

 

 


