CHM 222

QUIZ I, 16 Jan 2018

KEY

- 1) W=P_{ex} dV For reversible work, $P_{in}=P_{ex}$ $W_{rev} = P_{in} dV \& W_{irrev} = P_{ex} dV$ for expansion, $P_{in} > P_{ex}$, $W_{rev} > W_{irrev}$ (4 x 1 = 4)
- 2) $C_V = (dQ/dT)_V$ $dE = dQ - P_{ex}dV$ at Constant volume $dE_V = dQ_V$ So, $C_V = (dQ/dT)_V = (dE/dT)_V$ (4 x 1 = 4)
- 3) (a) two bulbs A and B connected by a stop cock, immersed in water
 (b) B is evacuated.
 (c) stop cock opened to allow ideal gas to expand against zero pressure, P_{ex} = 0
 (a-c= 2)
 (d) No temp change, dT=0 and dQ=0
 (e) dE = (dE/dT)_V dT + (dE/dT)_V dV
 (f) dE = dQ P_{ex}dV
 Or (dE/dT)_V dT + (dE/dT)_V dV= dQ P_{ex}dV

 $(dE/dT)_V dV = 0$ since dV is not zero, $(dE/dT)_V = 0$. (d-f=4)

Since dT=0 and dQ=0 and $P_{ex} = 0$

- 4) In Joule-Thompson Experiment dQ=0 So dE= $P_{ex} dV$ Since irreversible, $W_{irrev} = P_{ex} dV = P_{ex} (V_{final} - V_{initial})$ For left piston $P_{ex} dV = P_1 (0-V_1) = -P_1V_1$ For right piston $P_{ex} dV = P_2 (V_2 - 0) = P_2V_2$ $dE = E_2 - E_1 = -(-P_1V_1 + P_2V_2)$ $E_2 + P_2V_2 = E_1 + P_1V_1$ (6 x1 = 6
- H vs T curve for Carnot Cycle.
 For ideal Gas, H=E+PV= E + RT
 Further for ideal gas, dE = C_vdT

So $dH = C_v dT + RdT = C_P dT$ For isothermal process dT = 0 and hence, dH = 0. Thus two isothermals become a point. For adiabatic process $dH = C_p dT$ Integrating $H = C_p T + \text{constant}$ Thus for adiabatic process H varies linearly with T i.e. a straight line. (6x 1)

6) work done for electrolysis of 36 gm water at 27 C. (use R = 8 J M⁻¹K⁻¹) $H_2O = H_2 + \frac{1}{2}O_2$ 1 mole or 18 gm water = 1 mole $H_2 + \frac{1}{2}$ mole $O_2 = 3/2$ mole 36 gm or 2 moles water = 3 mole $W = P_{ex} (V_{gas} - V_{water}) = P_{ex} V_{gas} = P_{ex} x (nRT/P_{ex}) = nRT = 3 x 8 x 300 J = 7200 J$