INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH BHOPAL

Department of Chemistry

First Quiz, September 2024

Course: CHM 325/635 Time: 45 minutes Full Marks: 20

NOTE: The quiz is for a total of <u>20 marks</u>. Answer **All** questions. Marks for questions are as indicated.

- 1. Angular momentum \vec{L} of a particle is given by $\vec{L} = m\vec{r} \times \vec{v}$. where the velocity \vec{v} is related to the angular velocity $\vec{\omega}$ by $\vec{v} = \vec{\omega} \times \vec{r}$ and \hbar, m are constants. Show that $\vec{L} = mr^2 [\vec{\omega} \hat{r}(\hat{r} \cdot \vec{\omega})]$.
- 2. The expectation value of kinetic energy of a 1-particle quantum mechanical system is given by

 $\int_{all\ space} \psi(\vec{r}) \left(\frac{-\hbar^2}{2m} \nabla^2 \psi(\vec{r}) \right) d\tau$

, where $\psi(\vec{r})$ is a real wavefunction that vanishes at $r \to \infty$. Show that this integral is always positive. (4 marks)

- 3. Let ψ be a solution of Laplace's equation over some volume V (with continuous derivatives in the volume). Prove that the integral over any closed surface in V of the normal derivative of ψ , $(\partial \psi/\partial n, \text{ or } \vec{\nabla} \psi \cdot \vec{n})$ will be zero. (6 marks)
- 4. The angular momentum operator in quantum mechanics is given by $\hat{L} = -i\hbar \vec{r} \times \vec{\nabla}$. Express this operator in spherical polar coordinates. (6 marks)