CHM 421/621 Assignment 1

August 28, 2023

Due on $29^{\text {th }}$ Aug., 2023.

1. For a system with the fundamental equation

$$
u=\left(\frac{\theta}{R}\right) s^{2}-\left(\frac{R \theta}{v_{0}^{2}}\right) v^{2}
$$

(a) Find the three equations of state.
(b) Verify that the equations of state are homogeneous zero order, i.e. that T, P and μ are intensive parameters.
(c) Show that $\mu=-u$ here.
(d) Express μ as a function of T and P.
2. A particular system obeys the relation

$$
u=A v^{-2} \exp (s / R)
$$

N moles of this substance, initially at temperature T_{0} and pressure P_{0}, are expanded isentropically ($s=$ constant) until the pressure is halved. What is the final temperature?
3. Show that if a single-component system is such that $P V^{k}$ is constant in an adiabatic process (k is a positive constant) the energy is

$$
U=\frac{1}{k-1} P V+N f\left(P V^{k} / N^{k}\right)
$$

where f is an arbitrary function.
4. Two particular systems have the following equations of state:

$$
\begin{aligned}
\frac{1}{T^{(1)}} & =\frac{3}{2} R \frac{N^{(1)}}{U^{(1)}} \\
\frac{1}{T^{(2)}} & =\frac{5}{2} R \frac{N^{(2)}}{U^{(2)}}
\end{aligned}
$$

where R is the gas constant. The mole number of the first system is $N^{(1)}=2$ and that of the second is $N^{(2)}=3$. The two systems are separated by a diathermal wall, and the total energy in the composite system is $2.5 \times 10^{3} \mathrm{~J}$. What is the internal energy of each system in equilibrium?
5. The fundamental equation of a particular type of two-component system is

$$
\begin{aligned}
& S=N A+N R \ln \frac{U^{\frac{3}{2}} V}{N^{\frac{5}{2}}}-N_{1} R \ln \frac{N_{1}}{N}-N_{2} R \ln \frac{N_{2}}{N} \\
& N=N_{1}+N_{2}
\end{aligned}
$$

where A is an unspecified constant. A closed rigid cylinder of total volume 10 L is divided into two chambers of equal volume by a diathermal rigid membrane, permeable to the first component but impermeable to the second. In one chamber is placed a sample of the system with original parameters $N_{1}^{(1)}=0.5, N_{2}^{(1)}=0.75, N_{1}^{(2)}=1, N_{2}^{(2)}=0.5, V^{(2)}=5$ $\mathrm{L}, T^{(1)}=300 \mathrm{~K}$ and $T^{(2)}=250 \mathrm{~K}$. After equilibrium is established, what are the values of $N_{1}^{(1)}, N_{1}^{(2)}, \mathrm{T}, P^{(1)}$, and $P^{(2)}$?

