CHM 428 Assignment 2

September 5, 2025

Due on 15^{th} Sep., 2025 in class.

1. (a) Prove the generalized uncertainty principle

$$\langle \Delta \hat{\alpha}^2 \rangle \langle \Delta \hat{\beta}^2 \rangle \ge \frac{1}{4} \left| \langle \left[\hat{\alpha}, \hat{\beta} \right] \rangle \right|^2$$

where $\hat{\alpha}, \hat{\beta}$ are two observables.

(b) Derive an uncertainty relation for the components of orbital angular momentum \vec{L} , given that $\left[\hat{L}_i,\hat{L}_j\right]=\epsilon_{ijk}\mathrm{i}\hbar\hat{L}_k$, where i,j,k run over the cartersian coordinates x,y,z and ε_{ijk} is the Levi-Cevita symbol

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{if } (i,j,k) \text{ is an even permutation of } (x,y,z) \\ -1 & \text{if } (i,j,k) \text{ is an odd permutation of } (x,y,z) \\ 0 & \text{if any two indices are equal} \end{cases}$$

- 2. Show that a Hermitian operator $\hat{\alpha}$, when represented in an orthonormal basis $\{|\lambda_i\rangle\}$, corresponds to a Hermitian matrix \mathbf{A} , such that $\mathbf{A}_{ij} = \langle \lambda_i | \hat{\alpha} | \lambda_j \rangle$ and $\mathbf{A}_{ij} = (\mathbf{A}_{ji})^*$.
- 3. The operator $\hat{\eta}$ that converts one orthonormal representation $(\{|\lambda_i\rangle\})$ into another $(\{|\xi_i\rangle\})$ as $|\xi_i\rangle = \hat{\eta}|\lambda_i\rangle$. Show that $\hat{\eta}$ is represented in either basis by a unitary matrix \mathbf{U} , such that $\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = I$, where I is the identity matrix.

4. Prove the following properties of the Dirac delta function $\delta(x)$, given its basic definition as

$$\int_{-\infty}^{\infty} \delta(x)dx = 1 \tag{1}$$

$$\int_{-\infty}^{\infty} \delta(x)dx = 1$$

$$\int_{-\infty}^{\infty} \delta(x)f(x-a)dx = f(a)$$
(2)

- (a) $\delta(x) = \delta(-x)$
- (b) $\delta(ax) = \frac{1}{|a|}\delta(x)$

(c)
$$\int_{-\infty}^{\infty} \delta'(x) f(x-a) dx = f'(a)$$

- (d) $\delta(g(x)) = \sum_{i=1}^{N_{roots}} \frac{\delta(x-x_i)}{|g'(x_i)|}$, where the sum is over the number of roots of the real function q(x).
- 5. Given the basic commutator, $[\hat{x}, \hat{p}_x] = i\hbar$, show that the following relations hold
 - (a) $[\hat{x}, \hat{p}_{x}^{m}] = i\hbar \hat{p}_{x}^{m-1}$
 - (b) $[\hat{x}, f(\hat{p}_x)] = i\hbar f'(\hat{p}_x)$
 - (c) $[g(\hat{x}), \hat{p}_x] = i\hbar g'(\hat{x})$

where f and g are two continuous functions and the primed quantities are their corresponding derivatives. <u>Hint</u>: After solving the first part, use a Taylor series expansion for f and g about 0 to solve the next two parts.

6. The Hamiltonian operator of a particle moving in 1-dimension is given as $H = T + V(\hat{x})$, where T is the kinetic energy operator (see above) and $V(\hat{x})$ is the potential energy operature defined as a function of \hat{x} . Compute the commutator $\hat{C} = \begin{bmatrix} \hat{x}, \hat{H} \end{bmatrix}$ and show that the expectation value of $|\hat{x}, \hat{C}|$ is a constant for any arbitrary (normalized) state.

7. The position representation wavefunction of a 1-dimensional particle in a certain energy eigenstate is given by $\psi(x) = N \exp\left(-\frac{x^2}{2\sigma^2}\right)$, where N is a normalization constant. Show that the momentum representation of the same state also has the same functional form (Gaussian) and determine the corresponding σ . Show that the momentum-space and position-space σ 's are inversely related. What can you say about the uncertainty of locating the particle in space from the nature of ψ ? Hint:

$$\int_{-\infty}^{\infty} dx \, \exp\left(-ax^2\right) e^{i2\pi kx} dx = \sqrt{\frac{\pi}{a}} \exp\left(-\frac{\pi^2 k^2}{a}\right)$$