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- Peripe
-commuteTheorem 5 . If 2 observables

=

then there exists a complete set

I simultaneous eigenstates of the two.

=> [14, B173 with Kp17 = < 1,917
KB) =pl, p')

suchthatany
state Ia

·

=X
-G

Proof: Consider 2 observablesI such
= that [,] =0 -↑

Let (17 = 611736
5157 = S'187

2D3 ,91917
-> o/a .



Cas
I' are all non-degenerati.

② =) (4"I(,]() = 0

& <" 1* k17 - < "11') = 0

u . ( "- x)("15k) = 0 -

If"' then ("15k = 0 -
This result is itself stated as ticoreur.

Theorem: If [,To and I has
- -

non-degenerate eigen values , wen ⑤
is diagonal in the bases of [Cskles.

i <" 19(1) zo , ****.
N

Now, (c="X"(1)
-

=k') 17 cuis
-

= p(a)(1) - 6



S

⑤ is just the eigemalie equation for

S . Thus, I & p have simultaneou
-which we now labeleigenstati

as [K',B13.

Note that while we have assumed
I to be non-degenerateC Hiere is
no such restriction or

T

. Therefore,
-

in principle, there could be more that
me x' for which B'is live same.

This justifies the double-label of-
the states . Since they are eigensate
of an observable we have :

XpX -
Hence proved .

Cas 2 : <'is d-fold degenerate&

let the corresponding states be
&ki>j ,d . O/N ⑮



For states K"7, not in this

degenerate set egn .① slit helds.
But for states willin live set, in

general, < 1Kilfo .-

However, given a set of linearly
independent slates Ekj7j= 1,d, it
is possible to come up with another

set [1j)3j=1, such that

() = x1j) -G
&(i) = zij-

This can be done by insisting there.
exist [Cik] such that

=Kn

andDo is satisfied.



Noli that
, if we require, [17)
-

tobe ol . When it means :

(j) e Sij - ⑫

&je

& Ske -⑬
:. [ Cik = Gij -⑭

k= 1 ↓ i, k = 1 ,d .

Note that the connection between

(1) & /21 basis can be made-
formally through an operativ U, st

1)= (:]

⑫ () = Kiki)
Since this a requirement for

-⑯
any (ii) we have that



ut = -
=> " = +-

⑮ ki)=i)
=+1:> -⑭

: Kildj]= Gij :

= zij
-⑳

=> it= -S

:t = it=
Such an operator is called

-
a unitary operator-

Unitary operators are flei used for&

changey from one oo to another

olo basis.



So es ⑩ can be written as

adlitpld] Dis
on Et=
&unitaryoperatorwhichachievea

&

diagonalize s D

We will see more of this shortly.
The outcome

,
however

,
is that even

when live is non-dyenets we
-

H
can show that

9 by an appropriate
- -

unitary transformationA we can get↑
&

a set of 1 :1· states corresponding to
His eigenvalu 2 , where the

: (1) = 0 if itj
-



The diagonal values now correspond
to eigenvalues of when Yields
↓. These states arei labeled

as

1
, P .), KipBc) ..., KagBe

where B: "Is are not necess
equal . 1

arily
This says that while an X

-

measurement could notdistinguish between
·use states (same L'eigenvalueS
a ⑤ measurement can Thus,
we have "resolved" the degeneracy.
The idea couldbe extended to other

compatible deservable 8, 8 , eli , such
that [,5) = (5 ,8) = (8,8)

=(8) =... = o in

they all mutually commute and
are hence mutually compatible.



Then the bas states of wis
-

system can be completely resolved
&ki, , ...>]

if this set of mutually compatible&

observables is complete.

=compatibleObservable and
a

uncertainly
-

Theorem 6 : If 2 observables are
-

& -
-

incompatible theus they do not
share a complete set of simultaneous
eigenblate
Ceary toproval
Measureme with not yield bette

-=> with arbitrary precision simultanearly
Let's quantify their inference.



Let's define in operator
-

Ad= -[]
+ expect
value in an

Then
, arbitrary phys an
(5)] (E)

give measuremenda a 'values
would yield

<(123) = <( - (2))
= (- 2( + (3)

= [2 -( -⑫
where we have used His formula

() = <E/E) 15)-normalid
->

By postulate4. is just the
variance of the distribution of X



Theorem : Given 2 Observable&
-

-

their variances in any physical
state satisfies

#><-K
-

To prove this we will use three
lemmas from vedor spaces.

ISchwarz inequality of vector spaces
(prore as H.W).

#(iv) - Kulvile
where (v), (v) Etc.

A. Expectation value of a Hermitian operator
is purely real.

# Expectation value of an anti-Hermilion-
& &

operator is purely magwary



Now we prove the theorem by
first setting

107 = AY15)30
in

(V7 = AB/E)

This gives us :

(CAE) (CAFE -1 JacaTY
-

where we have used the fact that
A, At are Hermitian and hence,&

At =A &At=Al-
Now
, AdA =E /[AAB] +&A,a)

-
when &

, 53= +B-
(anti-commutation



Furthermore

A] = [-; -(i))
= [

,]-
We also note that the

commutator is an anti-Humilian

operator . [ ,Byt= -[,5) -⑮
by its definition

:

But this anti-commutator i
Humilian

· 92,53t = [2, 17-
The RAS &⑪ becomes :

Kaza= / <:,]) +421,37T
& ↓-
&

purely umaginary purely realClemma III) ChummaS



·

=/+ 13,P
-

C sunce (a + ib)2= 197+ 161)
-

in ⑮ is positivesecond term&
so dropping it does not charge
Hir

- -

in ⑪ but onlyinequalitymakes it shonger.

Therefore , we have

(*)) ((ap)) = /(T
or taking square roof

-
on bette sides :

Ad AB +(7)
↳



where Ax = XLY7 IApr
-

are variances of the respective
--dishibution also termed as

-
- &uncertainties in the respective--

variables
↑

⑪ is the generalised uncertainly
principle.

If we know the commutator of 2
observablesinen we can predict the

uncertainly relationfor them.

For all mechanicalobsonables
,
it

turns out that it is enough to9
know just one fundamental
commitation.



Postulate 5: The position and momentum
- --

operators of any (quantum
- -particle salisfy the following- -

commutatos relations.

[Vc , Pp] = it Exp-
where ↳p run over live Carterian
components x,y ,z.

Using this postulate and the G . U .P.

⑪ we can write-

AVApa1-
er AxApa I

AyAPyI
AZAPt?


