3/9/2025 Day 16. Matrix representation of Operations Consider the eigenvalue equation for a Hermitean Sparator: $\hat{\alpha} | \alpha_i \rangle = \alpha_i | \alpha_i \rangle - \hat{\alpha}$ Representing this in the $\frac{2}{1} | \alpha_i \rangle$ tensis

we get, $\langle \alpha_i | \hat{\alpha} | \alpha_i \rangle = \alpha_i \langle \alpha_j | \alpha_i \rangle$ or $(\vec{\alpha})_{ji} = \alpha_i \delta_{ji} - (6)$ ('. ' (x; |x|) = Sij gental eigenkels) . Any Hermilian sperblor is represented by a diagonal matria in its eigenbans (basis Q 2 eigenbets) This is called a "diagonal representation".

Product of Operation.
$$\hat{\alpha}, \hat{\beta} \rightarrow dnenodes$$

$$|V\rangle = \hat{\alpha} \hat{\beta} |U\rangle \implies (\text{in } \{\langle \lambda_i | \} \text{ benn})$$

$$\langle \lambda_i | V\rangle = \sum_{j=1}^{N} \langle \lambda_i | \hat{\alpha} \hat{\beta} | \lambda_j \times \hat{\beta} \rangle$$

$$= \sum_{j=1}^{N} \sum_{k=1}^{N} \langle \lambda_i | \hat{\alpha} | \lambda_k \times \lambda_k | \hat{\beta} | \lambda_j \rangle$$

$$= \sum_{j=1}^{N} \sum_{k=1}^{N} \langle \lambda_i | \hat{\alpha} | \lambda_k \times \lambda_k | \hat{\beta} | \lambda_j \rangle$$

or $V_i = \sum_{j \neq i} \sum_{k \neq j} \sum_{j \neq i} \sum_{k \neq j} \sum_{k \neq i} \sum_{k$

Theorem 8: If an observable à is
diagonal in a basis, and if
another observable à commulies with
it, the à is also diagonal in
that basis

Proof: Let $\langle \lambda_i | \hat{\alpha} | \lambda_j \rangle = \alpha_i \delta_{ij}$ Given $[\hat{\alpha}, \hat{\beta}] = 0$ — (2) コ くんに [これ,月] 入り = 0 一(22) め Z {<>ilâlxk×xxlplxj> - < xi | p | x x x x | 2 | x j x or - Jai Sik Bkj - Bikaj Skj?=0 k gz (xi ßij - xj ßij) = 0

or
$$\beta_{ij}$$
 $(\alpha_i - \alpha_j) = 0$ $-(23)$
 $\Rightarrow i$ $i \neq j$, $\beta_{ij} = 0$ $-(24)$
 $\Rightarrow \hat{\beta}$ is also diagonal in the $\{<\chi_i\}$ basis.

Representation in continuous basis.

 β_i (at least) one real parameter,

Representation in continuous basis:

If (at least) one real parameter,
say ?, labeling the base states
is continuous then we get
functions ? representing the
thates.

10>

[10]

[10]

[25]

These are called work function

For operation, we get a fundion of 2 variables.

ie
$$\langle \vec{r} | \hat{\alpha} | \vec{r}' \rangle = \alpha(\vec{r}, \vec{r}')$$

$$= \alpha(\vec{r}) \delta(\vec{r} - \vec{r}')$$

$$- 29$$
Note that $\delta(\vec{r} - \vec{r}') = \delta(x - x') \delta(y - y')$

$$\delta(z - z')$$

$$- 30$$
For such an operator, (27) would become

 $= \int dr' \, \alpha(r) \, \delta(r-r') \, \nu(r')$ $= \, \alpha(r) \, \mu(r) \, - \frac{31}{31}$ so, it seems that the operator acts on $\nu(r)$ yield $\nu(r)$ one position at a time. This is why its called beat.

 $V(\vec{r}) = \int_{0}^{1} d^{3}r' \propto (\vec{r}, \vec{r}') U(\vec{r}')$

In contrast, if $\alpha(\vec{r},\vec{r}')$ cannot be written in lien of, a Dirac delta function lien it is said to be "non-local".

ts. Potential energy operator.

 $V(\vec{r}) = \frac{1}{2}k\hat{r}^2$ (oscillator)

It's a function of \vec{r} hence $\{|\vec{r}|\}$ are also als eigenstalis. \vec{r} it is diagonal in position basis, and hence, epace-local.

For 1.d systems 2 is the problem operation for 2 position. Correspondingly 212'75 form the basis and 4(2) the state representation, $\alpha(x,x')$ the operator representation.

Momentim representation: 节节分= 节节7 一③ b'= (b,, by, b2) - 33 Functions of F are diagonal in this representation. es. kinetic energy $\hat{T} = \frac{\hat{P}^2}{2m} - 39$ (p"|7/p") = b2 8(p"-p") - 3) This representation is otherwise uncommon. It is useful to ask, then, how to would Le represented in position basis. To show this let is consider a quanting partide morry along 2, so that the protion kets 7/273 from a complete set.