glahar Day 18. The Schnidinger Equation (cH.) The Hamiltonian Spendor. Classically Hamiltonian is a function of wordinales, momenta and time $\mathcal{H} = \mathcal{H}(\mathcal{U}, \mathcal{H}, t) - (1)$ for a N-particle system, in most cases, it is conveniently writtin as a sum of the total kinetic energy of the system and the total potential energy. The latter can arise from both interactions and interactions will external forces/field $\mathcal{H} = T(\epsilon p_i) + V(\epsilon^2 q_i, t)$ $T = \sum_{i=1}^{n} \frac{p_i^2}{2m_i}$ V= V(193) + 27 Vext (2:,t) (We will see at least one noteable exception to this later in the course)

Written as in (2), the Hamiltonian tracks the instantaneous total energy of the system. Note that 'q' represent generalized coordinates that are not necessarily the Certesian coordinates of the particles. The momenta $\{p\}$ are correspondingly generalized as well.

10 keep mallers simple, we will initially only forus on contesian coordination and momenta. Using postulate 2, we can promote 3 to a Q.M. operator

as: $\hat{\mu}(t) = \frac{7}{2}\hat{p}_{i}/2m_{i}$ + $V(\xi F_{i}, \xi, t)$ - (5) In analogy with its identity in classical inechanies, 44 can be shought of as the total energy operator.

Note that $\hat{H}^{\dagger} = \hat{H} - \hat{G}$ is Hermitian

Postulate 6: The lime evolution of a state of a (quantum) system is determined by the relation: i方 2 | 単(t) | 平(t) | Here 1947) is presumed to be normalized at all times. (7) (7) is called live (time-dependent) Schrödinger Equation, after ils aultier E. Schrödinger. (TDSE) Usually, we know the state we have prepared lie system in Let's call this as $|\Psi(t=0)\rangle = |\Psi(0)\rangle - (8)$: (7) is a first-order differential equation in line, ethis one Initial condition is sufficient to solve (9), in

*** An aside on differential equation An equation of the form $\sum_{j=0}^{n} p_{j}(z) y_{j}(z) = f(z) - 1$ j=0where $a < z < b \in \mathbb{R}$ $y^{(j)}(z) = \frac{d^{j}}{dz^{(j)}}, \text{ when } y \in \mathbb{R}$ $(s \cdot t \quad y^{\omega}(x) = y(x))$ is called a linear differential equation If n is the highest order derivative for which the corresponding function $f_n(x) \neq 0$, then the equation is said to be 6, n^{th} order. All the functions $\{b,(2)\}$, f(2) are presumed to be defined on the open interval $x \in (a,b)$.

If we define the differential

Operator $\hat{Z} = \sum_{j=0}^{\infty} p_j(z) \frac{d^j}{dz^j}$ — (2) then (1) is also written as $\widehat{\mathcal{L}} y(2) = f(2) - \widehat{3}$ In such a case, since $\hat{\mathcal{L}}(y_1 + y_2) = \hat{\mathcal{L}}y_1 + \hat{\mathcal{L}}y_2$ D - linear operator, Kence the leim linear D.E. We offer encounter initial value problèms where the value of the Junction y(x) along with that of its derivatives is known at some point 20. We then desire to determine the for y(x) which satisfies there initial conditions & eq. 3).

Theorem 1: (Existence & Uniqueuen) Given an $\hat{n}^{(1)}$ order LDE (3), along with the auxilliary conditions: $y^{(j)}(z_0) = z_j$, j = 0, n, if $\{p_j(z)\}_{j=0,n}$ and $\{(z)$ are real, fruit, single valued and continous in some région surrounday ette point (20, Z.) lieu ltière is one and only one solution to the LDE. in an interval -h \(\pi \pi \)h lying within the region.

Thus, the existence & uniqueness of a solution, guien a set of unitial conditions, can be guaranteed.

Let us specialize to lin case of 2nd order LDE. That is, with $\mathcal{L} = p_2(x)y'(x) + p_1(x)y'(x)$ $+ p_o(z)y(z) = f(z)$ so that $\mathcal{L}y(x) = f(x)$ —6 Homogenous LDE: The equation Ly(x) = 0 — 5 is called a homogeneous LiDE. Theorem 2: If $y_1(z)$ is a reduling to $y_2(z)$ then so is $cy_1(z)$ where $c \in \mathcal{L}$. Theorem 3.: If $y_1(x)$ & $y_2(x)$ are any 2 solution

Theorem 3.: If $y_1(x)$ & $y_2(x)$ are any 2 solution

C, $y_1(x)$ + $y_2(x)$ C, $y_1(x)$ + $y_2(x)$ C, $y_1(x)$ + $y_2(x)$

This is just the principle of superposition of solutions. Note that since (5) is not accompanied by auxilliary conditions, it is possible to find omultiple soutions.

However, it turns out that it is possible to generate all possible solution from just a few bank one.

The solutions to (5) all form a lineal vector space over complex fields.

So it is possible to ask how many linearly independent solutions can ive find at most. This number is of course, the dimension of the

solution space.

Theorem +: There are n linearly independent solutions possible for a nu order homogeneous L.D.E. The general solution to live L.D.E. is then of the form: $y(z) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x)$ where 24i(2) 3i=13n are a set of n L.I. saulions. (ie. $\sum_{i=1}^{n} \alpha_i y_i(n) = 0 \Rightarrow \alpha_i = 0$ is the only solution Linear indépendence can be checked by computien the Wornkian: $W(x) = \begin{cases} y_1 & y_2 & y_n \\ y_1 & y_2 & y_n \\ \vdots & \vdots & \vdots \\ y_n & y_n & y_n \\ y_n & y_n & y_n \end{cases}$

The functions are L.I if and only if $W(z) \neq 0$ for some $z \in (a,b)$ domain where solution is soryet.

.. For a 2nd order Homogeneous L.D.E. Itue are at most two linearly widependent solutions...