15/4/2025 Day 20. Quantum free parlicle (26) can be written 20: $\frac{-\hbar^2}{2m}\frac{d^2\Psi_E(x)}{dx^2} + (V(x) - E)\Psi_E(x) = 0$ -> 2nd order differential equation (highest dut. is 2) → Lineal (power of highest dut. is 1) (if ψ is solution the $\lambda \psi$ is also a solution for $\lambda \in \Phi$) -> Homogeneous 2ndorder => we need 2 condition to fix etre solution Linear =) If High Alabore solution their thomogram cHiz)+dplagator a solution for c,det

A solution to (27) exists, for a given set of initial conditions (4 (x0) = 30 and 4 (26) = Z, , for instance), If (V(x)-E) is real, finite, single-valued and piece-wise continuous. |4 (2) | d2 & probability of finding
particle with energy E around
a pt. 2. — 28 => \int \left| \frac{1}{4} (a) \right|^2 da -> finite - (29) 28 & 29 are condition that arise from Postulate 4 (Born's postulate). They will ensued if we require that the solutions 15 (27) be - single-valued

- jûnite for 4 (2) - continuous everywhen

Rewriting (27) as $\frac{d^2 \Psi_E(x)}{dx^2} = \frac{2m}{h^2} \left(V(x) - E\right) \Psi_E(x) - \frac{30}{30}$ we note that

a) If V(x) is continuous everywhere, so are $\frac{d^2y}{dx}$ and $\frac{dy}{dx}$ along with Y(x)h) If V(x) has finite number of

b) If V(x) has finite number of finite discontinuities (piecewill sortinuous), then Y''(x) has finite discontinuities.

=) $Y'(x) = \int Y''(x) dx$ is

Still continuous.

c) If V(x) has a discontinuity where it jumps to 00, then det also jumps

to so at that pt => 4(a) is discontinuous.

The conditions on Y(z) may thus be summarized as:

- 1. $\Psi(z)$ is always continuous, finite and single-valued everywhere.

 2. It is always continuous except
- 2. dt is always continuous except

 dr at points where V(r) jumps

 to 00 discontinuously.
- 3. depending on V(z).

The same conditions hold also for the overall wavefundin \$\mathbb{T}(z,t).

Note that if our initial preparations sails the system of in an energy eigenstate, say 1507, then $\alpha_{\varepsilon}(0) = \delta_{\varepsilon, \varepsilon_0} - 31$ $\Rightarrow |\Psi(t)\rangle = e^{-\frac{1}{4}} |E\rangle - 32$ In such a case the probabilities associated with any observable & D.(4)=Kx1/2(4)) = Kx1/E>/-(3) which is not live-dependent. Hence, states such as 32 are called Stationary Clation.

Solvery TISE is equivalent to looking for elationary states.

Free particle in 1-dineurian.

A parliele of mass m moves freely along lie X-axis.

Here "free" means the potential energy it experiences is uniform in space. i.e. V(z) = nonstant. Let us set it to zero. The results will not change except for a constant shift in energies.

.. Hanviltonian og the system is

 $\hat{H} = \frac{\hat{p}_{x}^{2}}{2m} - 34$

In position basis, the time-independent Schrödniger egn. for the system is

 $\frac{-h^2}{2m}\frac{d^2}{dx^2}\psi(x) = E\psi(x) - (3)$

or
$$\frac{d^2 f(x)}{dx^2} + \frac{2mE}{4r^2} \cdot \psi(x) = 0$$
is a 2^M order LHDE. Additionally

This is a 2th order LHDE. Additionally, it has combaut everficients. In

such a case it becomes easier to look for a solution.

Given
$$a_2 \frac{d^2(x)}{dx^2} + a_1 \frac{dy(x)}{dx} + a_2 y(x) = 0$$

where $a_0, a_1, a_2 \in \mathbb{R}$ are combined where $a_0, a_1, a_2 \in \mathbb{R}$ are combined.

we can lift
$$y(x) = e^{\lambda x}$$
 as a solution.

$$= \frac{(a_2 \lambda^2 + a_1 \lambda + a_2)}{(a_2 \lambda^2 + a_2 \lambda^2 + a_3 \lambda^2 + a_4 \lambda^2 + a_4 \lambda^2 + a_5)} = 0$$

Non-trivial solution exists when: $a_2\lambda^2 + a_1\lambda + 40 = 0 - 37$

(37) will give 2 rooks
$$\lambda_1 2 \lambda_2$$

yielding two provide solution

$$y_1(x) = e^{\lambda_1 x}$$

$$y_2(x) = e^{\lambda_2 x}$$

$$y_2(x) = e^{\lambda_2 x}$$

is general solution is written as
$$y(x) = C_1 y_1(x) + C_2 y_2(x) - 35$$
is called an auxilliary equals

The auxilliary equalism for (36) is $\lambda^2 + k^2 = 0 - 40$

$$=) \lambda = \pm \sqrt{(k^2)} - 41$$

 $k^2 = 2mE$, $k^2 > 0$ if E > 0.

Let us consider luis can fret. $= \frac{1}{2} \Rightarrow \lambda = \pm i k - 42$ $= \pm \sqrt{2mE/k^2}$ So the L.I. solution for a given Eare $\Psi_{E}^{\pm}(z) = \exp\left(\pm i \int_{\overline{H}}^{2mE} z\right)$ And the general solution at au E is 4 (2) = A+4 (x) + A 4 (x) Since lie problem does not Offer any other constraint me other constraint, we cannot determine by by applying army boundary conditions However, there is one piece of information that we can use.

First let us define the parameter $k \in (-100,00)$, such that $E(k) = \frac{\hbar^2 k^2}{\lambda m} - 45$ Thus, the L.I. solutions to the problem, at any energy, can be written as: $\psi(x) \equiv e^{ikx} - 48$ $= \langle 2|\Psi_{k}\rangle \qquad E(k) = \frac{\hbar^{2}k}{2m}$ These functions are the eigenfrenching the momentum gentler

hat (u) = th d y (α) = (th) y (α) - (4)

hat i d a

This is also evident from lie

from Q momentum eigenfunchin seen
hefore

$$\psi_{p_2'}(z) = \frac{1}{\sqrt{2\pi t}} e^{i\frac{p_2'z}{\hbar}} - 48$$

This identification has the following emplication:

$$\psi_{k} | \psi_{k} \rangle \propto \langle \psi_{k} | \psi_{k} \rangle \\
= \delta(|k_{k} - k_{k}|)$$

= to S(k-k')-(49)
te. Muy are orthogonal

iiî, 4 can be normalized and written as
$$\psi_{k}(z) = L e^{ikz}$$

$$-60$$

jv, Since [Ĥ, fr] = 0 for the free-portide Hamiltonian, we must be able to simultaneously determine energy and momentum of the particle in any energy eigenstate with arbitrary precision.

Therefore, the desired stationary solls can be sometimeted out
$$74(2)$$
.

$$\Phi(x,t) = \mu e^{ikx}e^{-i\frac{kx}{2m}t}$$

$$k \sqrt{2\pi}$$

We could easily have noted (5) first and guessed the energy eigenselis dérectly ! This is the power of the gentles algebra we leavened so fax. k -> quantum number.

Case iii,
$$E < 0$$

$$\Rightarrow k^{2} = -\frac{2m|E|}{\pi^{2}} - \frac{3}{3}$$
or $k = \pm ik - 59$
where $k = \frac{2m|E|}{\pi^{2}} \ge 0$. -55

$$\Rightarrow L.I. solution are.
$$\psi^{*}_{E}(x) = \exp(-kx) - \frac{3}{3}$$

$$\psi^{*}_{E}(x) = \exp(kx) - \frac{3}{3}$$
But solutions are inadmissible because 55 diverges as $x \to -\infty$ while 57 diverges as $x \to -\infty$.

Therefore, the particle is not allowed.$$

Therefore, ette particle is not allowed to have negative energies

The formula solution to the TDSE b: $\Psi(x,t) = \int dk A(k) \Phi_k(x,t)$ where $\beta_{k}(z,t)$ is given by (52) and $k \in (-\infty, \infty)$.

A(k) are coefficients of expansion. Eugen enlyis Eigen $b(k) = \frac{1}{2m} \ge 0$ Eigen $b(k) = \frac{1}{2}$ Eigen $b(k) = \frac{1}{2}$ Note that the allowed energies in states are gaples.

k - quantin number, IEZ > 12)