23/10/2025" Lee. 28. Ehrenfest and Virial Theorem Ehren fest Theorem Consider a general QM system describbel the Hamiltoniak $\hat{H}(t)$.

Suppose 19(1) is a general state

of his orphism and $\hat{A}(t)$ is an

operator with possible explicit timedipendence. (2) $\frac{\partial A(t)}{\partial t} \neq 0$ -(i)Then, live expectation value of A, at any time, in live state 19(4) is $\langle \hat{A} \rangle_{t} = \langle \Psi(t) | \hat{A}(t) | \Psi(t) \rangle - 0$ $\equiv \langle \hat{A}(t) \rangle$ The state at which it changes in line is guin by $\frac{d\hat{A}}{dt} = \left(\frac{3\Psi(t)}{3t}\right) A(t) |\Psi(t)\rangle$ + 〈坚的[条(4)〉 一③

The first 2 lèrms Q (3) are simplified usivel the TDSE 1 h 2 14 14 14 (4) -(1) dr J. —it d(प्री) = <प्रीभी -0 at Thus, $\frac{\partial \hat{A}}{\partial t} = \frac{-1}{4} \langle \hat{\Psi}(t) | [\hat{A} \hat{m} \hat{H}(t)] | \hat{\Psi}(t) \rangle$ $\frac{\partial \hat{A}}{\partial t} + \langle \hat{A} \hat{m} \rangle$ $\frac{\partial \hat{A}}{\partial t} - \langle \hat{A} \hat{m} \rangle$

This is general form of the Ehrenfest the Brem. Let's specialize some familier cases.

First we consider time-independent Hanvillonians H such that 光しつ=もし 一色 and lets consider an observable Â

s.t. $\partial \hat{A} = 0$ (no explicit time of dependence) For such an observable we have $\frac{d\langle \hat{A} \rangle_{t}}{dE} = -\frac{1}{K} \langle [\hat{A}, \hat{H}] \rangle - \mathcal{E}$ For any state 14th). \mathcal{G}_{E} [\hat{A} , \hat{H}]=0, (8) mean that $\frac{d(2)}{dt} = 0 - 9$

it. (A) is "conserved" during state evolution. That is, it doesn't change in time. But [A, H) = also means that the 2 describbles share a common set of eigenstate. More specifically $A|E\rangle = a_{E}|E\rangle - 0$ where a_{ε} is an eigenvalue of A we can then label the energy eigenstells as ? (a, E) since we can determine both ALE. simultaneons y will arbitrary precision. co a forms a "good" quantim number lo label energy eigenstalis,

We can combine @ 2.00 lo
glate that

"Any observable that commules with

the Hamiltonian Q a QM system

will yield a good quantum number

for the system and its

expectation value is conserved

during motion."

A more direct way to see this: <AA (PU) | A (PU) > = <4(0) | e # 2 = ## 14(0)) = (如) (Ae樂e) # (4CO)> = <96)|Â1967>=(A) (: [A,A)=0) -(1)

Now ronsider
$$\hat{A} = \hat{z}$$
 for a 1-partial 1-d problem.

 $= \hat{H} = \frac{\hat{p}_{1}^{2}}{2M} + V(\hat{z}) - I^{2}$
 $\Rightarrow \hat{z} = \hat{z}$ ($\hat{z} = \frac{\hat{z}}{2M}$)

 $= \frac{1}{2M} \left[\hat{z} + \hat{z} \right] \left[\hat{z} + \hat{z}$

(15) is enalogous to this equ.

$$\dot{z}(t) = \frac{\dot{p}(t)}{m} = v(t)$$

$$\dot{z}(t) = \frac{\dot{q}(t)}{dt} = -\frac{\dot{q}(t)}{dt} = -\frac{\dot{p}(t)}{dt}$$
(18) is the analog of the Newton's equ. 2 modes $F = ma = m \dot{z}(t)$

$$\dot{z}(t) = \frac{\dot{p}(t)}{m} = v(t)$$

$$\dot{z}(t) = \frac{\dot{p}(t)}{dt} = v(t)$$

$$\dot{z}(t) = v(t)$$

The 2 egns. d < 2 } = <<u>6</u>2> $m \frac{d^2 \hat{x}_k}{dt^2} = -\left(\frac{d^2 \hat{v}}{dx}\right)$

are Together Called Mu Ehrenfest theorem. They help illustrate the correspondence between quantian and classical notions.

If | \$\P\$ is a stationary state then
the corresponding wavefunction is separable
in space & line.

Y(x,t) = \P(x)\ph(t) - \frac{20}{100} where $\phi = \exp(-i\frac{E}{\pi})$ & 4 is eigenfunction for E.

 $\Rightarrow (\hat{z}) = \int_{-\infty}^{\infty} dz \, \psi^*(z) \, z \, \psi(z)$

The RHS can be evaluated (converges)

Y (x) is a bound state.

 $=) \frac{d^{2}t}{dt} = 0 \quad \text{for mel a}$ $\frac{d}{dt} = 0 \quad \text{state} \quad | \quad -22$

· (\$7=0 from (5)
23)

expedition vedue of momentum is O at all times.

Hyperinial Theorem: Now consider a QM system of N (1-d) particles or 1 particle and N-d, We define the generalized coordinate and momente $\{\hat{q}_i,\hat{p}_i\}_{i=1,N}$ is describe lue dynamic variables, such that [qi, bi] = it 8; $[\hat{q}_i,\hat{q}_j] = [\hat{p}_i,\hat{p}_j] = \int_{24}^{24}$ ie. Itey still obey the same commitation relations part of our potulates. The Hamiltonian would then be û = Z' C; pi + V(9,929 2) where Ci are some constants that depend on the choice of corresponds.

For instance if
$$79:3$$
 were just Cartesian coordinates $C_i = 1/2m_i$.

A $\hat{p}_i + \frac{1}{c} \frac{1}{2z_i}$

Now consider the operator

 $\hat{A} = \sum_{i=1}^{N} \hat{2}_i \hat{p}_i - 26$

and a stationary bound state $1\%(4)$?

Then, $d < \hat{A} > 0$ -26

But de 2 = 1 ([A, H]) by (8)

where we have used the fact that
$$\begin{bmatrix} Q_i p_i, p_j^2 \end{bmatrix} = 0 & \text{if } i \neq j \\
 & \text{if } C_i \left[Q_i, \hat{p}_i^2\right] \hat{p}_i \\
 & + Q_i \left[\hat{p}_i, V(q)\right] \\$$

[Â,Ĥ] = \(\tilde{\text{Taik}},Ĥ\)

 $= \sum_{i=1}^{n} C_i \left[\hat{q}_i \hat{p}_i, \hat{p}_i^2\right]$

+ [qîp, v(z)]

Then, differentialing of (30) with Respect to
$$\lambda$$
 yields

LHS = $\sum_{i=1}^{n} \frac{9V(\lambda_{i})}{9(\lambda_{i})} \frac{9(\lambda_{i})}{9\lambda}$

= $\sum_{i=1}^{n} \frac{9V(\lambda_{i})}{9(\lambda_{i})} \frac{9(\lambda_{i})}{9\lambda}$

RHS = $\frac{1}{9}(\frac{1}{2}\lambda_{i})$

RHS = $\frac{1}{9}(\frac{1}{2}\lambda_{i})$

Rince (30) (30) & (32) are true for any λ , so can set $\lambda = 1$ which yields

 $\frac{1}{9}(\frac{1}{2}\lambda_{i}) = \frac{1}{9}(\frac{1}{2}\lambda_{i}) = \frac{1}{9}(\frac{1}{2}\lambda_{i})$
 $\frac{1}{9}(\frac{1}{2}\lambda_{i}) = \frac{1}{9}(\frac{1}{2}\lambda_{i}) = \frac{1}{9}(\frac{1}{2}\lambda_{i})$

<u>(33)</u>

For ouch a political the hypervinal theorem, for a stationary bound state, yields

2 (77 = n (V) -34)

This is called the Visial Theorem (due to V. Fork). It relates the

This is called the Visial Theorem (Of to V. Fork). It retailes the average K.E & P.E of any eigen state & a am system.