4/11/2022 Lee 32. Eigenslike I Eigenschen 9 Angular The generaly angular momentum gerator is defined through the following relations: $\frac{\Delta}{J} = \frac{\Delta}{J} + \frac{\Delta}{J} = 0$ $\alpha = \frac{\pi}{J}, \frac{\pi}{J} = 0$ [Î, Îp] = ih Expr Jr -3

Here $\hat{J}^2 = \hat{J} \cdot \hat{J} = \hat{J}_a^2 + \hat{J}_z^2 + \hat{J}_z^2 - \hat{\Phi}$ $\hat{\Phi}_{i}(\hat{D}) \neq \hat{D}_{i}(\hat{D})$ that we can simultaneously determine \hat{J}^2 2 only one of the components $\hat{\Phi}_{i}(\hat{D})$. Conventionally, the \hat{J}_{i} component is quantized simultaneously with \hat{J}_{i}^2 . Let's look for simultaneous eigenkets

g J', Jz. det's call these as

[12, m;) such that

$$\int_{2}^{2} |\lambda_{1}m_{1}\rangle = m_{1} \pi |\lambda_{1}m_{1}\rangle - \Im$$

$$\int_{2}^{2} |\lambda_{1}m_{1}\rangle = f(\lambda_{1}m_{1}) + 2|\lambda_{1}m_{1}\rangle - \Im$$

Note that, f, m_{1} are real: \hat{f} to Hernita.

If m_{1} is only a component \hat{g} \hat{f}

$$f - m_{1}^{2} \geq 0 \qquad - \Im$$

Define $\hat{J}_{\pm} = \hat{J}_{2} \pm \hat{i} \hat{J}_{y} - \Im$

$$\hat{J}_{z} = \hat{J}_{+} + \hat{J}_{-} - \Im$$

These satisfy:
$$[\hat{J}_{z}, \hat{J}_{\pm}] = \pm \hat{i} \hat{J}_{\pm} - \Im$$

$$[\hat{J}_{z}, \hat{J}_{\pm}] = 2 + \hat{i} \hat{J}_{z} - \Im$$

$$[\hat{J}_{z}, \hat{J}_{\pm}] = 0 - \Im$$

(13)
$$\Rightarrow \int_{1}^{2} (J_{+} | \lambda, m; 7) = f(\lambda, m;) t^{2} (J_{+} | \lambda, m;)$$

ie. $J_{+} | \lambda, m; 7$ are also eigenstates G f^{2} with the same eigenvalue, $f(\lambda, m; 7)$, as $| \lambda, m; 7 \rangle$

 $\hat{J}_{z}(\hat{J}_{+}|\lambda_{i}m_{j})$ $= (\hat{J}_{+}\hat{J}_{z} + \hbar\hat{J}_{+})|\lambda_{i}m_{j}\rangle$ (using (D) $= (m+1)\pi \left(\widehat{J}_{+} | \lambda, m_{j} \right) - (15)$

III's
$$\frac{1}{2}(\hat{J}_{-}|\lambda,m_{j})=(m_{j}-1)h(\hat{J}_{-}|\lambda,m_{j})$$

ie. $\hat{J}_{+}|\lambda,m_{j}\rangle \propto |\lambda,m_{j}\pm 1\rangle$

where $\{|\lambda,m_{j}\rangle\}$ are taken to be normaly.

On general, $(\hat{J}_{+})^{n}|\lambda,m_{j}\rangle \propto |\lambda,m_{j}\pm n\rangle$

(18) defines a ladder of states, originally from a quien m_{j} .

All the states have the m_{j+1} same eigenvalue for \hat{J}_{+}^{2} i.e. m_{j+1} m_{j+2} :

But, since all Jz eigenvalves must satisfy (2) for a quien f., we must have a maximum m. value. det is refer to this value a j.

j² = max [m]] for a quien \(\)

=) -j < m; < j for a quien \(\)

To ensure this we must impose.

From (2) we have, $\hat{J}_{+}(\lambda,j) = 0 - \frac{23}{23}$

$$\hat{J}_{x} = (\hat{J}_{x} - \hat{i}\hat{J}_{y})(\hat{J}_{x} + \hat{J}_{y})$$

$$= \hat{J}_{x}^{2} + \hat{J}_{y}^{2} + \hat{i} [\hat{J}_{x}, \hat{J}_{y}]$$

$$= \hat{J}^{2} - \hat{J}_{z}^{2} - \hat{i}\hat{J}_{z} - 24$$
(using 5,626)

Subilitating (en in 23 we get
$$f t^{2} - \hat{j}t^{2} - \hat{j}t^{2} = 0$$
or
$$f(\lambda, j) = \hat{j}(j+1) - 25$$

ft - jt - jt = 0

or $f(\lambda,j) = j(j+1) - 25$ f is the magnitude of \overline{f} and genain the same for all m_j . Therefore, we can replace the quantum number λ by j which Jully determines f.

$$\hat{J}^2 | j, m_j \rangle = j (j+i) h^2 | j, m_j \rangle$$

Starling from 18,37 and repeatedly afflying I we get the station [1 1, j-1>, 1j, j-2>, ..., 1j, m;]... [j,-j] Thus, live only values of m; allowed for a given j. Since this templies that for each j we have m = 2j+1 m_j values we have that j = (n-1) where n is j = (n-1) positive integer. =) j=0,2,1,3/2,2,5/2,··· value. flj,mj>= j(j+1)th2 | j,mj/ 2回 fz | j,mj = のが (j,mj) j=0, 1, 1, 5/2/... m; = -J, ..., J

An infiniterimal spatial rotation of a position ket can be achieved using
$$\hat{D}_{z}(\epsilon) = 1 - i \frac{\epsilon}{\hbar} \hat{L}_{z} - 30$$

where \hat{L}_{z} to the orbital A.M.

$$\hat{D}_{z}(\epsilon) = 1 - i \frac{\epsilon}{\hbar} \hat{L}_{z} - 30$$

where we have used spherical polar coordinates for the position bels.

Now, a rotation by an angle α can be achieved in element α can be achieved in element α and α are α and α and α and α are α and α and α are α are α and α are α and α are α are α and α are α are α and α are α and α are α are α and α are α are α and α are α and α are α are α and α are α are α and α are α and α are α are α and α are α and α are α and α are α are α and α are α are α and α are α and α are α are α and α are α are α and α are α and α are α are α and α are α are α and α are α and α are α

where we have used the approximation
$$Tb$$
 the exponential:

$$e^{-\chi} = \mu \left(1 - \frac{\chi}{N}\right)^{N} - \frac{34}{4}$$

or $\hat{D}_{2}(\alpha) = \exp\left(-\frac{i}{\hbar}\hat{L}_{2}\right) - \frac{3i}{4}$

Now, $\hat{D}_{2}(\alpha) | r, \theta, \varphi \rangle = | r, \theta, \varphi + \alpha \rangle$

$$-\frac{3b}{4}$$

Now, $\hat{D}_{2}(x) | r_{i}\theta_{i}\phi_{i}^{2} = | r_{i}\theta_{i}\phi_{i}+\lambda_{i}^{2}$ $= \exp\left(-i\frac{\kappa}{k}\hat{L}_{2}\right) | r_{i}\theta_{i}\phi_{i}^{2} = | r_{i}\theta_{i}\phi_{i}+\kappa_{i}^{2}$ $= \frac{3\theta}{k}$ Let $|l_{i}m_{i}\rangle$ be Drhilāl A·M.

eigensalis or that

det $|L_1 m_L\rangle$ be printed A.M.

eigenstalis of that $\hat{L}_2 | \ell, m_L\rangle = |m_L t_1 | \ell, m_L\rangle$ $\hat{L}_2 | \ell, m_L\rangle = |\ell(\ell + 1) t_1^2 | \ell, m_L\rangle$ $\hat{L}_3 | \ell, m_L\rangle = |\ell(\ell + 1) t_1^2 | \ell, m_L\rangle$ $\hat{L}_4 | \hat{D}_1(\alpha) | r, \theta, \varphi \rangle = |\ell, m_L| r, \theta, \varphi, \varphi\rangle$ $\hat{L}_4 | \hat{D}_1(\alpha) | r, \theta, \varphi \rangle = |\ell, m_L| r, \theta, \varphi, \varphi\rangle$

from 37 we have also that $\langle l, m_e | r, \theta, \varphi + \alpha \rangle = \exp(-i\alpha m_e)$ (2, M) 1,0,4) For $\alpha = 2\pi$ we get -41 $\langle l, m_{\ell} | r, \theta, \varphi + 2\pi \rangle = e^{-\frac{i 2\pi m_{\ell}}{\ell_{\ell} m_{\ell} | r, \theta, \varphi}}$ -43Now, $\langle lm_l | ro \varphi \rangle = \psi_{lm_l} (r_l q_l)$ is the wavefunction corresponding to 14 mg , since the warffunder a 211 rollier leaves the position invariant we must have: $e^{-\frac{1200}{1200}} = 1 - 44$ or me e = -(45)

Smill, Me is among ?-l,-l+,...l?,

(45) =) l ∈ Z.

Therefore, the integral values of j

are attended for A.M. describing

spatial Rotations of position kets.

spatial rotations of position kets.
Orbital AM hat only integral
L values posseble.

 $l = 0, 1, 2, \cdots$ $m_e = -l, -l+1, \cdots, l-1, l$