18/8/2025 Day 7. Inner product and Tual spaces liven a (complex) vector space V, lue define an inner product rule for any 2 vectors $|V\rangle, |W\rangle \in V^N$, denoted as $\langle V|W\rangle$, such that (V/W) & (mapping to scalars) </p c) $\langle V | aW \rangle = a \langle V | W \rangle$ (linear) $\langle av|w\rangle = a^*\langle v|w\rangle$ Cantilènear) d) (v/(a/v)+b/w)) = a \V | u \rangle + b \ \V | w \rangle

(dutin butingly over vector allition)

(non-negalivity e) (v/v) >0 for measure) Property (a) defines a functional map from VN to set of complex numbers &. Note that we choose 2 vector from VN to make this map. (Binary operation) 1v), lw) --> (v|w) & (Properly (b) says that the order in which we combine the 2 vectors mallers and the results are related through a complex conjugation. (Remember is Z = a + ib, $a,b \in \mathbb{R}$ is a complex number then $Z^* = a - ib$ Or, in polar rotation, if $Z = Te^{i\theta}$ then $Z^* = \tau \bar{e}^{i\theta}$ $\eta \theta \in \mathcal{C}$ MO ER

Property (e) allows us to associate a meaning to the inner-product of vector with itself. We say that, for a vector IV) $\in V^N$, || |v>|| = (v|v> -6 () square of the norm (or length) of the vector IV). so that the norm is Theorem 2: 21, for a vector IX>EV,

 $\langle x|x\rangle = 0$ then $|x\rangle \equiv |0\rangle$. Conversely, the norm of the null vector is exactly zero. A vector space for which such an immer product can be (and, hence, is) defined is called an Inner Product Space

Note that while we defined the properties desirable of an unner (scalar) product, we haven't actually given a recipe to compute it. This, in turns out, depends on the vector space in question.

Eg. Consider the space formed by all doubles $\{(a,b), where a,b \in \mathbb{R}\}$ over a field of real numbers. Let's define an inner product as $\{V \mid W\} \equiv a_V a_W + b_V b_W$

where $|V\rangle = (a_v, b_v)$ $|W\rangle = (a_w, b_w)$ a) It is a vector space? b) It this a valid inverproduct? Solving the simultaneous equations in (13) will yield the components.

Dual Space and "boa" vectors

There's a more elegant (and formal) way to arrive at the notion of inner products we note that an inner product is essentially a linear map from a vector space V" to complex number of. Such a map is termed as a (linear) functional.

For every $|V\rangle$, $|W\rangle \in V^N$ we define a functional $f_{|W\rangle}(|V\rangle): V^N \to \mathcal{L}$ such that,

linear i, f_{IW} (a IV) = $a f_{\text{IW}}$ (IV), act m N?

anti-Linear ii, f_{alw} (IV) = $a^* f_{\text{IW}}$ (IV)

in IW)

cili, $f_{|W7}$ (107 + 147) denencity = $f_{|W7}$ (147) + $f_{|W7}$ (147) over ket addition civs $f(|v\rangle) = f(|v\rangle) + f(|v\rangle)$ Linearly

ove "brow addition

(v) $f(|v\rangle) = f(|v\rangle) = f(|v\rangle)$ vis $f(|v\rangle) \ge 0$ vii, $f(|v\rangle) = 0 + |v\rangle \in v$ Ly null rection Since pach f_{W7} depends on a W7EV, we can assume an easier notation $\langle w |$, such that $f_{|w\rangle}(|v\rangle) \equiv \langle w | v \rangle - E$ $\forall |v\rangle \in V^{N}$ The complete set of maps [(W): WTEV!) is easily shown to form a vector space. This is called the "trial Space" of VIN, denstial as VIN.

Each vector <vI ∈ VI is called a "bra" vector. Rewriting all the properties in (14) in terms of the bra vectors we have: IVYEV $(i, \langle w|(a|v)\rangle = a\langle w|v\rangle$ (wI E VN a = 4 ii, (aW/V) = a* (W/V) (iii) <w| (10>+10>) = <w|U>+ <w|V> رأن, ((w| + (x1) (۱۲>) = <w/> y, <wl>>= <vl>>> w, < < >10 > 0 (011/2 = (010) = 0 +1/5/1/ رابح

These are exactly the properties we required of our immer products. So, we can identify I.P.1 as the combination of a vector each from V/2 its dual V/N such that the rules in (16) are sheyed.

Orthogonality: For IV7, IW7 \(\times \) \(

(V) are said to be ostrogonal if the condition in (7) is obeyed. Some is also true for (W) 2147. As mentioned before, given its non-negativity, we can associate (V/V) with the square norm/length of 1v> ie 11v>11 = J<v1v>. so we can define a unit vector as one with a unit length.

Y (u/v>=1 =) 1v> is with rector Given a vector $|V\rangle \in V^N$, we can always define a unit vector $|V\rangle$ which is "parallel" to $|V\rangle$ by 147 = 147 - 18 1114>11 = 147 - 18

This procedure is called Normalijation.

In QM, only the "direction" of a ket

vector desides the state. So states

ivil Often be normalized.