19/8/2025 Day 9. Lineal Operators Orthonormal bases: A set of linearly independent vectors U = [1477; i=154] spanning V/N so said to form an orthogonal basis set if $\langle u_i | u_j \rangle \neq 0$ of i=j= 0 Y 17 & ¥ ij ∈[1,N]. -(1) If, additionally, the vectors are normalized we have the condition $\langle u_i | u_j \rangle = \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$ for an orthonormal basic set Affrevialed as O/N.

By its definition, we can write any vector $V \in \mathbb{Y}^N$ in terms $U \cdot (0/N)$ 1v7 = = = a; lui> - 3 where $\alpha_i \in \mathcal{F}$ α_i can be determined easily using \mathfrak{D} . $\langle u_j | v \rangle = \sum_{i=1}^{N} \alpha_i \langle u_j | u_i \rangle$ $= \sum_{i=1}^{N} \alpha_i \delta_{ij} = \alpha_j$ $= \sum_{i=1}^{N} |u_i\rangle \langle u_i| \rangle - \delta$ $= \sum_{i=1}^{N} |u_i\rangle \langle u_i| \rangle - \delta$ $= \sum_{i=1}^{N} |u_i\rangle \langle u_i| \rangle - \delta$ (5) is one of the most important occlotions for QM. It says that any vector can

be resolved into an o/n basis with coefficient obtained as inner products of the vector with the corresponding basis ket.

$$|V\rangle = \sum_{i=1}^{N} |u_i\rangle\langle u_i|V\rangle$$

$$\hat{p}_i$$

The object \hat{P}_i is interesting. Comparing with \hat{D} , its action can be given as

Note that, $\hat{p} = \left(\sum_{i=1}^{N} \hat{p}_{i}\right)$ is also an operator. But this one maps $|V\rangle$ to $|V\rangle$ $|V\rangle = \hat{p}|V\rangle - \mathcal{D}$

Such an operator acts equivalent to a multiplication by 1. i. it is called a identity operator, dentity by $\hat{1}$.

i.e. $\hat{p} = \sum_{i=1}^{N} p_i = \sum_{i=1}^{N} |u_i \times u_i|$ $= \hat{1}$

This slatement is called the resolution of the identity in the

The Objects | Ui XUi | (or Pi)
are a combination of a bra and a ket
but different from the riner product.

This is because they map V" >> V",
whereas I.P.s map V" > I..
These sojeds ovce called
"Outer Products"

U basis.

Hilbert spaces: Inner product spaces which are also a "complete melvic space " one called Hilbert spaces. Without worrying about the meaning of this definition, we will plain that the I.P. spaces of wherest to us form Hilbert spaces. They will be denoted henceforth as H. Typically, the H.S. of our interest will be infinite dimensional (N-00). This does not present any conceptual difficulty. difficulty. We also note here that unally, an O/N basis set is chosen to "represent" vectois in the HS. $|V\rangle = \frac{Z}{c=1} |u_i \times u_i | V\rangle - 8$ Which one we shook depends on

our convenience.

dinear Operators: Let us formally introduce the notion An object à is said to be a linear operator on H, if (1) acting on any vector IV> $\in \mathcal{H}$, it produces another vector (say) IW7 $\in V^N$. or $\hat{\alpha}: \mathcal{H} \longrightarrow \mathcal{H}$. à (cIV) = câlv) tect (2) $\hat{\alpha} (1 \vee \gamma + 1 \vee \gamma) = \hat{\alpha} | \gamma \rangle + \hat{\alpha} | \nu \rangle$ (3) We can see that the projection greator defined cartier clasely meet this description Operation can be of many kinds. Some common ones are;

above but with C = 1. In mele a cax we ux the symbol if for the operator. 3. Null operator: If 2/V>= 07/VER then à is called a mull greator. In many ways operators can be thought of as numbers with some exception.

Addition of operators (a) - (a + p) | v> = a | v> + p | v> Since the result of the additive operation is also a vector, we can think of $2+\beta$ as some operator 3, such that

1. Comstant operators: $\alpha | \forall \gamma = c | \forall \gamma$ operator $\forall | \forall \gamma \in \mathcal{X}$

2. Identity Operator. Same definition as

This lets us define live operator identity $\hat{\beta} = \hat{\alpha} + \hat{\beta}$ — [1]

Scaling operators: If a & F, N) = H.

Then $(\alpha \hat{\alpha}) |V\rangle = \alpha (\hat{\alpha}|V\rangle) = \hat{\alpha} |\alpha V\rangle$ Product of operations.

 $(\hat{\alpha}\hat{\beta})|V\rangle = \hat{\alpha}(\hat{\beta}|V\rangle) - \mathbf{B}$ If there exists an operator 3 such that

3/V) = (2p) 1V> 41V) ER we can write, -4

(4) (5)

Note, however, that $\begin{array}{c}
\lambda \beta \neq \hat{\beta} \hat{\alpha} & -(6) \\
\text{in general.}
\end{array}$

Thus, operation de not "commute" in general.

Through these equations we have defined an operator algebra.

Operator identity: If $\hat{x} | \hat{y} = \hat{y} | \hat{x} | \hat{y} = \hat{y} | \hat{y} = \hat{y} | \hat{x} | \hat{y} = \hat{y} | \hat{y} =$