20/8/2021 Day 10. Hermilian Operators Action on duals: The same operators can also be understood to act on dual vectors to yield ther dual vectors. Here's how: Let $\hat{\alpha}|V\rangle = |W\rangle$ for some |VZEHC lten (U| â | Y > = (U| W > - 1) Since (V) can be any arbitrary vector and (W) ils image in 7e under 2, we can say that, $\langle x| \equiv \langle v| \hat{\alpha} - 3$ is that dual vector ($\in \text{Fe}$) which would yield the same value for winer product with IV) as. (U) would with IN). That is, $\langle x | : \langle x | y \rangle = \langle u | w \rangle$ This defines the action of a on a bra vector (from the right side)

Postulate 2: Every dynamical variable

To a (quantum) system, at each
instant, corresponds to a linear operation
on the Hilbert Space (72) of quantum
states.

Real dynamical variables will be seen to correspond to real or Hermitian operation By dynamical variables we mean all mechanical (and other) properties that describe all aspects of the instantaneous state of a system. These include positions, momenta, velocities, angular momenta dipole momenta, charge densities, magnetic momenta, etc.

Operation will be denoted by a hat oppening on top of the usual property symbol.

es. $\overrightarrow{\beta} \rightarrow \overrightarrow{\beta}$, $\overrightarrow{\mu} \rightarrow \overrightarrow{\mu}$, $x \rightarrow \widehat{\lambda}$, etc.

Adjoint of an operator: We defined above $\langle x| \equiv \langle u|\hat{\alpha}$. (x) itself is the dual of 1x7 which can be, in principle, connected to the ket 10> via some operator. Let $|x\rangle = \hat{\beta}|u\rangle - (5)$ Is there a connection between a l p? Yes. B is called the Hermitian adjoint of a and is dented by &t. Thus, if <×1 = <∪12 then $|x\rangle = \hat{a}^{\dagger}|u\rangle - 6$ From (18) we have, $\langle X|V\rangle = \langle U|\hat{\alpha}|V\rangle$ = <v/x>* = <v/a> ?. (UIÂIV) = <VIÂTIU) -®

Let
$$\beta^{\dagger} = \hat{\alpha}$$
. Then, (8) implies

 $\langle V | (\beta^{\dagger})^{\dagger} | U \rangle = \langle U | \hat{\beta}^{\dagger} | V \rangle$
 $= \langle V | \hat{\beta} | U \rangle - \hat{Q}$

Since this is true for any $|U\rangle$, $|V\rangle \in \mathcal{H}$.

We have

 $|\beta^{\dagger}|^{\dagger} = \hat{\beta}$

Legisal flow 3 the arguments to define the adjoint $|\beta^{\dagger}|^{\dagger} = |\alpha^{\dagger}|^{\dagger}$

Logical flow 3 the arguments to define $|x\rangle = \frac{9}{4} \langle x| = \langle 0|\hat{\alpha}\rangle$ $\frac{9}{4} \langle x| = \langle 0|\hat{\alpha}\rangle$ $\frac{9}{4} \langle 0|\hat{\alpha}\rangle$ $\frac{9}{4} \langle 0|\hat{\alpha}\rangle$ $\frac{9}{4} \langle 0|\hat{\alpha}\rangle$ $1|x\rangle = |\alpha^{\dagger}|0\rangle$

That is, the Hermitian adjoint of the Hermitian adjoint of an ofceration is the Operator itself. This is similar to $(c^*)^* = c \in \mathcal{F}$. Thus, grerator algebra resembles that of complex numbers with the caveal that $\hat{\alpha}\hat{\beta} \neq \hat{\beta}\hat{\lambda}$, in general. Postulate 2 then implies if a dynamical variable & is associated with the operator & ('xi') then its complex conjugate is associated with & Hence for real dynamical variables od, where &= 2*, we must have, for the corresponding operator a, that: $|\hat{\alpha} = \hat{\alpha}^{\dagger}|$ \longrightarrow $|\hat{\omega}|$ Such operation are wined Hermitian or self-adjoint or "real".

We can also include this ascertion in postulate 2 but it is not necessary since the requirement follows more intuitively. intuitively-

Note that guen any operator à on 4e, we can write.

 $\hat{\alpha} = (\hat{\alpha} + \hat{\alpha}^{\dagger}) + (\hat{\alpha} - \hat{\alpha}^{\dagger})$ $\equiv \hat{\alpha}_{R} + \hat{\alpha}_{I} - (1)$

where $\alpha = \hat{\alpha} + \hat{\alpha}^{\dagger} \Rightarrow \hat{\alpha}_{p}^{\dagger} = \hat{\alpha}_{p} \Rightarrow \text{Hermilian}$ (red)

 $\hat{\alpha}_{I} = \hat{\alpha} - \hat{\alpha}^{\dagger} \Rightarrow \hat{\alpha}_{I}^{\dagger} = -\hat{\alpha}_{I} \rightarrow skew-$ Hermilian so that $\alpha + \alpha = \alpha_R - \alpha_I - (2)$

Any operator can , hence, be written as a sum of a real (Hermitian) and an imaginary (skew-Hermitian) operators, just like a somplex number.

Properties of adjoint (Prove as Hw.)

1.
$$(\hat{\alpha} + \hat{\beta})^{\dagger} = \hat{\alpha}^{\dagger} + \hat{\beta}^{\dagger}$$

2. $(\hat{\alpha}\hat{\beta})^{\dagger} = \hat{\beta}^{\dagger}\hat{\alpha}^{\dagger}$

3. $(\hat{\alpha}\hat{\beta}\hat{\beta}...\hat{s})^{\dagger} = \hat{\delta}^{\dagger}...\hat{\delta}^{\dagger}\hat{\beta}\hat{\alpha}^{\dagger}$

4. $(|VXU|)^{\dagger} = |UXV|$

Alternative for termitian operation operation operation operator

6. $\langle v|\hat{\alpha}|v\rangle \in \mathbb{R} + |v\rangle \in \mathcal{H}$ for a real Genelon $\hat{\alpha}$.

7. If $\hat{\alpha}$ is real $i\hat{\alpha}$ is purely imaginary.

7. If à is real in is purely maginary
(skew-Hermiten)

L (3)

Eigenvalue equations: lyvieu a

linear operator à, it is possible

to ask for vectors \(\begin{array}{ccc} \lambda \chi \gamma \gamma \chi \gamma \ch

Such an equation is called the eigenvalue equation of $\dot{\alpha}$. $|V_{\alpha}\rangle$ is called an eigenvector and the corresponding scalar C_{α} is called the ligenvalue.

Hermilian operators have interesting properties associated with their eigenvalue equations.

Let $\hat{\alpha}$ be a Hermitian operator. $\Rightarrow \hat{\alpha}^{+} = \hat{\alpha}$. Let the corresponding eigenvalue equation be: $\hat{\alpha} | \forall \alpha \rangle = C_{\alpha} | \forall \alpha \rangle - G$

 $\Rightarrow \langle V_{\alpha} | \hat{\alpha} | V_{\alpha} \rangle = C_{\alpha} \langle V_{\alpha} | V_{\alpha} \rangle$ The property 6. in eq. (3) implies that

The property 6. in eq. (3) implies that $(V_a | \hat{\alpha} | V_a)$ is real since $(V_a | V_a) \ge 0$ and real, this implies C_a is real. So we get a very important result.

The eigenvalues of a Hermitian operator are real.

Consider 2 different eigenkets IVX, IVXI) $\frac{\partial |V_{\alpha}\rangle}{\partial |V_{\alpha}\rangle} = \frac{C_{\alpha}|V_{\alpha}\rangle}{-(12)}$ $\frac{\partial |V_{\alpha}\rangle}{\partial |V_{\alpha}\rangle} = \frac{C_{\alpha}|V_{\alpha}\rangle}{-(12)}$

Taking einer product of (1) with
$$\langle V_{k'}|$$

we get

 $\langle V_{k'}| \hat{\alpha} | V_{k'} \rangle = C_{k'} \langle V_{k'}| V_{k'} \rangle$

- (19)

Similarly, taking einer product of

(18) with $\langle V_{k'}|$ and lien taking

the complex conjugate of both

sides yields.

$$\langle V_{\alpha} | \hat{\alpha} | V_{\alpha} | \hat{\beta} \rangle = C_{\alpha}, \langle V_{\alpha} | V_{\alpha} | \hat{\beta} \rangle$$

$$\Rightarrow (wing property 5. in eq(3))$$

$$\langle V_{\alpha} | \hat{\alpha} | V_{\alpha} \rangle = C_{\alpha}, \langle V_{\alpha} | V_{\alpha} \rangle$$

$$-(21)$$

(Ca - Cai) (Vai | Va) = 0 -22

(19) - 20) gives :

We consider 2 cases below.

Then, $|V_{\alpha}| = 0$ — (23)

We Eigenvector corresponding to a distinct eigenvalues Q a Hermitian Grenator are orthogonal.

cii, $C_{\alpha} = C_{\alpha 1}$ (but $\alpha \neq \alpha'$ necessarily)

Such a case is neferred to as a

degeneracy & the eigenvalue is said

b be degenerate. |Va7 & |Vai7 are

not the same (or parallel).

Note that any combination of $|V_{\alpha}\rangle \leq |V_{\alpha}\rangle \leq |V_{\alpha}\rangle$ also is an eigenvector $\hat{\alpha}$. $\hat{\alpha} (\alpha |V_{\alpha}\rangle + b |V_{\alpha}\rangle) = C_{\alpha} (\alpha |V_{\alpha}\rangle + b |V_{\alpha}\rangle$

We can then construct 2 combination in the following way.

|u17 = 1 Var > / Klar 1 3 (5) |U27 E These are the unit vectors along (Va) I Vir) We can choose one of the eigenicos to be $|u_1\rangle$ itself. ie. $|e_1\rangle = |u_2\rangle - |u_2\rangle$ The second eigenvector orthogonal to less is written as: |E) = |U27 - |e1 Xe1 |U2) 9t is easy to check that this is orthogonal to 121). (e1/E7 = (e1/u2) - (e, |e)xe, |u2) = <e. | u2 - <e. | u2 = 0 (: 1e, is normalized)

is the 2nd op eigenvector.

Eigenvectors of a Hermitian over mutually orthogonal or can be chosen to be orthogonal (for degenerate cases).

To establish further the connection between Hermitian Genators and quantim mechanics we next bet up the "measurement" postulate.

The Measurement Postulales

Portulate 3 (a)

Any result of measurement of a real dynamical variable is one of the eigenvalues of the some sponding operator. Conversely, every eigenvalue is a possible nesult of a measurement of the dynamical variable for some state of the system.

- -> Physical meaning of eigenvalues of a Hermitian Operator.
 - all possible values can be measured and correspond to the eigenvalues of a

Postulate 3(b): If the system is in a dynamical state corresponding to the eigenket of a real operator & belonging to the ergenvalue a, the a measurement of 2 will certainly yield the value a' Conversely, if the system is in a state such that a measurement Q à is certain to yield the value a', then the state is an eigenstate Q à.

Implications:

[1) \(\alpha \) degenerate \(\Rightarrow \) State is in superposition of degenerate eigenstates.

(Resolution incomplete)

(2): a states of differing eigenvalues were orthogonal, if 2 preparations are certain to yield different values Q or, they are

orthogonal -> Physical meaning of orthogonally After a measurement spielding lue eigenvalue a, the system, being perturbed by the act of measuring "jumps" into the eigenstate |a'>.

Subsequent measurements continue to yield the value a' confirming this understanding.

Portulate 3(c): Collapse postulate

The state of a system depends linearly on the states that it "jumps" into following. a measurement.

Since 3(a) says all eigenvalues of a real variable are measureable and 3(b) statis the resulting states are eigenstes, what we are saying above in them any state depends linearly on the eigenstates of a real variable.

Complete set 9 states: A set of states on which any vector in space depends and hence can be used to fully represent any state.

Not all Hermitian operators have enough eigenvectors to satisfy this requirement.

Only those that do can be observed. Hence, there are called obscruables. For these,

14> = Z, Cx, |x'