Density Functional Theory - Levy-Lied Constrained Search Formulation

Lecture 28

CHM 652 / PHY 626 Electronic Structure of Materials

Varadharajan Srinivasan Dept. Of Chemistry IISER Bhopal

Lecture Plan

- N and v representable densities
- Levy-Lieb constrained search formulation of DFT

v representable densities

In deriving the Hohenberg-Kohn theorems we implicitly assumed that the densities of interest can be obtained by applying some external potential to an *N*-electron system. This was crucial in deriving the universal functional as well as the variational principle.

Densities associated with antisymmetric *N*-electron ground state wavefunctions of a Hamiltonian that includes an external potential are termed as *v*-representable densities.

Since F_{HK} is derived from such a wave function, it is also a functional of v-representable densities. That is, the variational principle is only valid for such densities.

Not all valid densities are necessarily *v-representable*.

N representable densities

Densities that are derived from any antisymmetric *N*-electron wavefunction are termed as *N*-representable densities.

Mathematically such densities satisfy (see Parr and Yang)

$$n(\mathbf{r}) \ge 0, \quad \int n(\mathbf{r}) d^3 r = N, \quad \int \left| \nabla n(\mathbf{r})^{\frac{1}{2}} \right|^2 d^3 r < \infty$$

This is a weaker condition.

Pure-state representable: densities obtained from a ground state antisymmetric wavefunction (same as *v-representable*).

Non-interacting pure-state representable: As above except that the Hamiltonian has no interaction among the electrons.

Mixed-state representable: densities obtained by mixing pure-state densities.

Vand v representable wavefunctions

Levy constrained search formulation

The variation principle suggests a search over the N-representable

space

$$E_0 = \min_{\Psi} \left\langle \Psi \left| \hat{H} \right| \Psi \right\rangle$$

Suppose, we break this search into two steps.

1) Search for the minimum over a wave functions yielding a

given density n(r)

$$E[n] = \min_{\Psi \to n(\mathbf{r})} \left\langle \Psi \middle| \hat{H} \middle| \Psi \right\rangle$$

$$= \min_{\Psi \to n(\mathbf{r})} \left\langle \Psi \middle| \hat{T} + \hat{W} \middle| \Psi \right\rangle + \int d^3 r n(\mathbf{r}) v(\mathbf{r})$$

$$= F_{LL}[n] + \int d^3 r n(\mathbf{r}) v(\mathbf{r})$$

N-representable wave functions

n(**r**)

Levy constrained search formulation

2) Search for the minimum over all densities of the energy functional

$$E_0[n_0] = \min_{n(\mathbf{r})} \left(F_{LL}[n] + \int d^3r n(\mathbf{r}) \right)$$

Where $n_0(\mathbf{r})$ is the minimising ground-state density.

Thus, the constrained search formulation extends the validity of the HK theorems to *N-representable* densities.

