### Density Functional Theory - Kohn-Sham Equations

Lecture 29

# CHM 652 / PHY 626 Electronic Structure of Materials

Varadharajan Srinivasan Dept. Of Chemistry IISER Bhopal

### Lecture Plan

- Ensemble DFT
- Kohn-Sham Approach to DFT

### Ensemble DET

The density-based variational principle as well as the existence of a universal functional can be extended to "ensemble" densities, i.e. those derived from mixed states.

#### Finite-temperature Canonical-ensemble Theory

**Density Matrix** 

$$\hat{\Gamma}_N = \sum_i p_{Ni} \left| \Psi_i^N \right\rangle \left\langle \Psi_i^N \right|$$

$$p_{Ni} \ge 0$$

$$\sum_{i} p_{Ni} \ge 0$$

State weights

$$A_0 = A[\hat{\Gamma}_N^0]$$

$$= \min_{n(\mathbf{r})} \left\{ F[n] + \int d^3r n(\mathbf{r}) v(\mathbf{r}) \right\}$$

$$F[n] = \min_{\hat{\Gamma}_N \to n(\mathbf{r})} \operatorname{Tr} \left\{ \hat{\Gamma}_N \left( \hat{T} + \hat{W} + \frac{1}{\beta} \ln \hat{\Gamma}_N \right) \right\}$$

- 1.  $n_0(\mathbf{r}) => \hat{\Gamma}_N^0$  uniquely and, hence, all equilibrium properties.
- 2. There holds a free-energy variational principle into which enters the universal functional.

### Ensemble DFT

The density-based variational principle as well as the existence of a universal functional can be extended to "ensemble" densities, i.e. those derived from mixed states.

#### Finite-temperature Grand-Canonical-ensemble Theory

Density matrix

$$\hat{\Gamma} = \sum_{N} \sum_{i} p_{Ni} \left| \Psi_{i}^{N} \right\rangle \left\langle \Psi_{i}^{N} \right|$$

$$p_{Ni} \geq 0$$
 State weights  $p_{Ni} = 1$ 

$$\sum_{N} \sum_{i} p_{Ni} = 1$$

$$\Omega_0 = \Omega[\hat{\Gamma}^0]$$

$$= \min_{n(\mathbf{r})} \left\{ F[n] + \int d^3 r n(\mathbf{r}) (v(\mathbf{r}) - \mu) \right\}$$

$$F[n] = \min_{\hat{\Gamma} \to n(\mathbf{r})} \operatorname{Tr} \left\{ \Gamma \left( \hat{T} + \hat{W} + \frac{1}{\beta} \ln \hat{\Gamma} \right) \right\}$$

- 1.  $n_0(\mathbf{r}) => \hat{\Gamma}^0$  uniquely and, hence, all equilibrium properties.
- 2. There holds a free-energy variational principle into which enters the universal functional.

It can be shown that *N*-representable densities can be written in terms of smooth, continuous and quadratically integrable orthonormal orbitals.

$$n(\mathbf{r}) = \int d\sigma \sum_{i} f_{i} |\psi_{i}(x)|^{2}$$

$$0 \le f_i \le 1$$

So, in principle, we can approximate a large part of the kinetic energy of an interacting system by the kinetic energy constructed out of these orbitals.

$$T_s[n] = \sum_{i} f_i \left\langle \psi_i \left| -\frac{\nabla^2}{2} \right| \psi_i \right\rangle$$

This idea was used by Kohn and Sham to devise a way to solve for the ground-state density.

Hohenberg-Kohn theorem applies to both interacting and non-interacting systems. So we ask what external potential  $v_s(\mathbf{r})$  when acting on a non-interacting system would yield the same ground-state density as an interacting system under an external potential  $v(\mathbf{r})$ ?

#### Non-interacting system

As we have seen before, for such a system the eigenstates are given by Slater determinants formed from 1-electron spin-orbitals  $\{\psi_j(\mathbf{r},\sigma)\}$  such that

$$\left(-\frac{\nabla^2}{2} + v_s(\mathbf{r})\right)\psi_j(x) = \epsilon_j\psi_j(x) \quad x = (\mathbf{r}, \sigma)$$

$$n(\mathbf{r}) = \int d\sigma \sum_{j=1}^{N} \psi^*(x)\psi(x)$$

$$T_s = \sum_{j=1}^{N} \left\langle \psi_j \left| -\frac{\nabla^2}{2} \right| \psi_j \right\rangle$$

From HK Theorems, we have

$$v_s \equiv v_s[n](\mathbf{r})$$

Therefore,

$$\psi_j \equiv \psi_j[n]$$

And

$$T_s \equiv T_s[n]$$

#### Interacting system

We break up the total energy as follows, for some orthonormal 1-electron orbitals  $\{\psi_j(\mathbf{r},\sigma)\}$ 

$$E[n] = T_s[n] + J[n] + E_{xc}[n] + \int d^3r n(\mathbf{r})v(\mathbf{r})$$

Hartree energy

$$T_s[n] = \sum_{i=1}^{N} \left\langle \psi_j \left| -\frac{\nabla^2}{2} \right| \psi_j \right\rangle$$

$$J[n] = \frac{1}{2} \int d^3r \int d^3r' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

$$n(\mathbf{r}) = \int d\sigma \sum_{j=1}^{N} \psi^*(x)\psi(x)$$

$$E_{xc}[n] = (T[n] - T_s[n]) + (W[n] - J[n]) \label{eq:exc}$$
 Exact Exact

Exchange-correlation energy

Interaction energy.

#### Interacting system

Since the density is now *represented* by the 1-electron spin-orbitals, we can write Euler-Lagrange equations in terms of the latter subject to the orthonormality constraint.

$$\frac{\delta E[n]}{\delta \psi_i(x)^*} = \sum_{j=1}^N \mu_{ij} \psi_j(x) \qquad \qquad \text{i=1,N}$$
 Lagrange multipliers

$$\left(-\frac{\nabla^2}{2} + v_{eff}(\mathbf{r})\right)\psi_i(x) = \sum_{j=1}^N \mu_{ij}\psi_j(x) \qquad n(\mathbf{r}) = \int d\sigma \sum_{j=1}^N \psi^*(x)\psi(x)$$

$$v_{eff}(\mathbf{r}) = v(\mathbf{r}) + \int d^3r' \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}[n](\mathbf{r})$$
Local potential

#### Interacting system

The potentials in the previous expression are derived as functional derivatives of the corresponding energies. For instance,

$$v_{xc}[n](\mathbf{r}) = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$

It is straightforward to show that the 1-electron equations can be converted to canonical eigenvalue equations by a suitable unitary trasnformation of the orbitals. This yields the **Kohn-Sham equations**.

$$\left(-\frac{\nabla^2}{2} + v_{eff}[n](\mathbf{r})\right)\psi_i(x) = \epsilon_i\psi_i(x)$$
$$n(\mathbf{r}) = \int d\sigma \sum_{j=1}^N \psi^*(x)\psi(x)$$

Interacting system

Comparing the non-interacting and interacting cases we realise we have basically introduced an auxiliary non-interacting system to solve our interacting electron problem such that both yield the same ground state density.

In particular, at the ground-state density we have

$$v_s(\mathbf{r}) = v_{eff}[n_0](\mathbf{r})$$

 $v_s(r)$  is called the Kohn-Sham potential. It is the answer to the question we asked.