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Ensemble DFT

The density-based variational principle as well as the existence of a universal functional can be
extended to “ensemble” densities, i.e. those derived from mixed states.

Finite-temperature Canonical-ensemble Theory
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Ensemble DFT

The density-based variational principle as well as the existence of a universal functional can be
extended to “ensemble” densities, i.e. those derived from mixed states.

Finite-temperature Grand-Canonical-ensemble Theory
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Kohn-Sham Approach to DFT

It can be shown that N-representable densities can be written in terms of smooth, continuous
and quadratically integrable orthonormal orbitals.
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S0, in principle, we can approximate a large part of the kinetic energy of an interacting system
by the kinetic energy constructed out of these orbitals.
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This idea was used by Kohn and Sham to devise a way to solve for the ground-state density.




Kohn-Sham Approach to DFT

Hohenberg-Kohn theorem applies to both interacting and non-interacting systems. So we ask
what external potential vs(r) when acting on a non-interacting system would yield the same
ground-state density as an interacting system under an external potential v(r)?

Non-interacting system

As we have seen before, for such a system the eigenstates are given by Slater determinants
formed from 1-electron spin-orbitals {i;(r, o) }such that
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Kohn-Sham Approach to DFT

Interacting system

We break up the total energy as follows, for some orthonormal 1-electron orbitals {¥;(r,o)}

En| =Tsn| 4+ Jn| + E c|n| + /d37‘n(r)v(r)

Non-interacting K.E.

Hartree energy

Exchange-correlation
energy

Here, Ea:c[n] =

Exact K.E. Exact
Interaction energy.



Kohn-Sham Approach to DFT

Interacting system

Since the density is now represented by the 1-electron spin-orbitals, we can write Euler-
Lagrange equations in terms of the latter subject to the orthonormality constraint.
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Kohn-Sham Approach to DFT

Interacting system

The potentials in the previous expression are derived as functional derivatives of the
corresponding energies. For instance,
ok

ch[n](r) = 5%(1‘)

It is straightforward to show that the 1-electron equations can be converted to canonical
eigenvalue equations by a suitable unitary trasnformation of the orbitals. This yields the Kohn-
Sham equations.




Kohn-Sham Approach to DFT

Interacting system _ _ _ _ | _
Comparing the non-interacting and interacting cases we realise we have basically introduced

an auxiliary non-interacting system to solve our interacting electron problem such that both
vield the same ground state density.

In particular, at the ground-state density we have
Vs(T) = Ve slno)(r)

vs(r) is called the Kohn-Sham potential. It is the answer to the question we asked.



