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XC Functionals in DFT

Adapted from Hardy Gross’s lecture
https://www.youtube.com/watch?v=dhal8xXY fo&t=2619s



https://www.youtube.com/watch?v=dhaI8xXY_fo&t=2619s

Local density approximation (LDA)

E . |p|=smallest part of total energy

simplest approximation: E_ [p|=0 = Hartree approach

Result: lattice constants and bonding distances much too large (20%-50%)

— E_ . = Nature's glue

LDA (Kohn and Sham, 1965)

£ [p]=]d'r p(F)et (p(F))

g (p) xc energy per particle of a uniform electron gas of density p

- (known from quantum Monte-Carlo and many-body theory)

Result: decent lattice constants, phonons, surface energies of metals




. Typical deviation
Quantity (from expt)

e Atomic & molecular <0.5%
ground state energies

e Molecular equilibrium <5%
distances
e Band structure of few %

metals, Fermi surfaces

e |Lattice constants <2%

Systematic error of LDA: Molecular atomisation energies too large and bond lengths
and lattice constants too small




One would expect the LDA to be good only for weakly
iInhomogeneous systems, 1.e., systems whose density satisfies:

val <<k = (3n2p)lz and IVDI

<K =43p/ 9%
P | P

Why is the LDA good also for strongly inhomogeneous systems?

Answer: Satisfaction of many exact constraints (features of exact xc fctl)

—

E' [pl== jdrp ‘r'jdr

n,_ (f, r ') coupling-constant-averaged xc hole density n__=n_+n_

mportant constraints:
jd3r'n (f,r') Id3r'ﬁc(f,f')=0 n. <0
are satisfied in LDA



Generalized Gradient Approximations (GGA)

EC" [p]= Id"r f(P(f)» Vp(f)|)

Langreth, Mehl (1983), Becke (1986), Perdew, Wang ( 1988)
PBE: Perdew, Burke, Ernzerhof (1996)

Construction principle: Satisfaction of exact constraints
(1mportant lesson from LDA and from gradient expansion of E_ )

Results: GGAs reduce the LDA error in the atomisation energy
significantly (but not completely) while LDA bond lengths are
over-corrected (1.e. are in GGA too large compared with expt)




Detailed study of molecules (atomization energies)
B. 6. Johnson, P. M. W, Gill. J. A. Pople, J. Chem. Phys. 97. 7847 (1992)

32 molecules (all neutral diatomics from first-row atoms only and H, )

Atomization energies (kcal/mol) from:

E’+E"" E]+E/" HF

mean deviation from experiment 0.1 1.0 -85.8
mean absolute deviation 4.4 5.6 85.8
for comparison: MP2
-22.4

22.4



LIMITATIONS OF LDA/GGA

Not free from spurious self-interactions: KS potential decays more
rapidly than r”’ for finite systems

(Consequences: ~ no Rydberg series
—~ negative atomic ions not bound
— 1onization potentials (if calculated from highest
occupied orbital energy) too small

Dispersion forces cannot be described

W. (R) — e (rather than R°)

band gaps too small: G
E,., (LDA/GGA) = 0.5 E,, (expt)

Energy-structure dilemma of GGAs

atomisation energies too large
bond lengths too large
(no GGA known that gets both correct!!)

Wrong ground state for strongly correlated solids, e.g. CoO, La,Cu0,
predicted as metals



Meta Generalized Gradient Approximations (MGGA)

\1(( \[p] J'd r p(r M(( \(p(r) IVp(I‘)I T(l‘ )

occup

(T) Z |V\|/m (T) | T\_[n]:jd}r t(r)

"'(10'

Result: Solves energy-structure dilemma of GGAs




Jacob’s ladder of xc functionals (John Perdew)
1

heaven (exact functional)
RPA-like P, IVpl , L, occupied & unoccupied KS orbitals + energies
hybrid P, |Vp‘ , L, occupied orbitals
MGGA P. ‘Vpl ,T
GGA D, |Vp|
LDA P

earth (Hartree E_ =0)



Adiabatic Connection Formula

(1)=T+Y v, (5)+ 2 Y
HA:T+Zv.r+ »—Z 0<h<]
i=] ol 2 i.k=l‘ri_rk|
1=K
N 2 N
H( 1)=T+Y v, 1)+ =3 —
i=] 2 k= ‘ri_rk|
12k

= Hamiltonian of fully interacting system

Choose v, (r) such that for each A the ground- state density
satisfies p,(r) = p,_,(r)

Hence V; _o(r) = viel(r)
Vyep(1) = V1)

Solve many-body Schroedinger eq for each A, yielding W,



Exact representation of E, [p]:

l
E. [p]=IdKW;,[P] W, :<\l’;. |Vcc|‘V>.>_Ell [P]
0

\
-

W, = <‘Vo |Vcc|‘l',()>_ £, [p]
= HF exchange

=E, [{(Pn}]

W(') = :ZE?L2 (Correlation energy in 2nd-order Gorling-Levy
perturbation theory)

Becke (JCP1993): W, =a+bA

EI = (W, + W,) = B 4 W)

GGA



E"™° = 0.25E" +0.75E™" +E™
EPNYP — 02" 1+ 0.8E!"* +0.72E™ +0.8E1"" +0.15E™™

Another way of constructing hybrids: Range separation (Savin, Baer, Kronik)

1 erf (prij) . erfc(prij)

T

L

long range short range

* Treat long-range part by wavefunction theory, HF
* Treat short-range part by density functional approximation (GGA)

For solids, it makes sense to do 1t the other way around
(Heyd, Scuseria, Ernzerhof):

E;{CSE - aE;{F,SR (u) + (1 . a)Elx’BE,SR (p) + Elx’BE,LR (“) + EEBE



Sth-rung functionals (using unoccupied KS orbitals)

2

l occup unoccup |<1J | ‘ ab>

E.:AP?. :5 Z Z
1]

E.*[Ggs]  and beyond RPA-functionals, e.g. E*"* plus TDDFT

with the response function y“)(r,r';) corresponding to H(2).
¥“(r,r';m) can be obtained from linear-response TDDFT




Non-selfconsistently:
post-LDA, post-GGA, or post-HF

Self-consistently, the Kohn-Sham way, vielding the

Optimized-Effective Potential (OEP) procedure.
This determines the variationally best local potential (i.e. the

potential whose orbitals minimize the given orbital functional
for the total energy)

Self-consistently, the Generalised Kohn-Sham (GKS) way.
This determines the variationally best orbitals (not restricted to

come from a local potential). The resuting GKS potential can be
non-local

Self-consistently, using the Gidopoulos variational principle.

This avoids the variational collapse of PT-derived functionals.
N.l. Gidopoulos, Phys. Rev. A 83, 040502(R), (2011)

Self-consistently, using the Sham-Schliiter-way (specifically for
functionals coming from an approximation of X[Gg]). This yields
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GGA and Meta GGA Functionals
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