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Spin Density as a Variable

In principle, the density (spineless) is the basic variable in DFT. However, in some applications it
IS quite useful to think of this arising from two contributions.

n(r) = nq(r) + ny(r)

nTM(r) =il e __5)

So that each spin-density Is allowed to vary subject to the normalisation of their sum to N. This
makes the energy a functional of both.
E = Elng,ny|

The H-K Theorems can easily be Eo=minE[p]=min{qe/p(r)vnuc(r) d’r + min(¥ f+‘7ee|‘1’>}

D
reformulated in terms of the spin-density ’ ' g

functionals. — min{qe/ p(NVauc(r) dr+ min | min (P|T + Vee|¥) }
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Spin-polarized systems

When the ground-state of an electronic system corresponds to
ny(r) # ny(r)

The system is said to be spin-polarized or, since this is often the case, magnetised.

We define the spin-polarisation as

e n+(r) — ny(r) = 202
()= e - nyy =

Along with n(r), this variable now can describe the energy functionals.

FE = FEns,n | = Eln, (]



Spin-restricted vs. Unrestricted KS systems

It can be shown that an analogous treatment yields the Spin-polarized KS equations
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Vs (r) = v(r) + v (r) + vgc[ng, ny(r)




Spin-restricted vs. Unrestricted KS systems

The polarised and unpolarised equations can be connected but are not the same.

Table 2. Definition of the noninteracting kinetic energy, exchange-correlation energy, and exchange-correlation potential in the spin-restricted and
spin-unrestricted formulations of KS-DFT.
Spin-restricted KS-DFT Spin-unrestricted KS-DFT
Noninteracting kinetic energy T,[p] = \Ir,nin (W | TS Ts(U) 0,Q = (r)nin <‘P§”) T ‘I’E“)>
s—P \Psu —p,Q
Decomposition of HK function Frklp, Q = Telp] +J[p] + Exclp, Q) Fuelp, Q) = T:[p, Q) +J[p] + EC [, Q)
Exchange-correlation energy Exclp, Q] = Fuklp, Q] — Ts[p] — Jlp] Ecc'[p, Q) = Fuxlp, Q] — s [0, Q] = J[p]
(u)
Exchange-correlation potential Ve|p] = 1 9Exc|p, Q] Vi [p, Q] = 1 96 [p, Q)
| 1 SEY)
V;gm [p’ Q] — XC [p7 Q]
ge 0Q(r)

Int. J. Quantum Chemistry 2012, 112, 3661-3684.



Spin-restricted vs. Unrestricted KS systems

Spin-restricted or polarised calculations become essential in some cases.

Table 1. Comparison of the spin-restricted and spin-unrestricted
formulations of KS-DFT. "Correct" indicates that the quantity calculated
for the noninteracting reference system agrees with the corresponding
one of the fully interacting system.

Spin-restricted Spin-unrestricted
KS-DFT KS-DFT
Correct p,(r)? Yes Yes
Correct Qq(r)? No Yes
¥, is eigenfunction of §27 Yes No
Correct (§%)? Maybe No
¥, is eigenfunction of S,? Yes Yes
Correct (S,)? Maybe Yes

Int. J. Quantum Chemistry 2012, 112, 3661-3684.



Spin-scaling of functionals

Kinetic energy functional

We first note that by their very definitions the kinetic energy functionals for the spin-unpolarised
and the spin-polarised cases are different.

T[] = min <\IJD P \IJD> Spin-unpolarized KE functional

Ll = min <\I!D 7 \I!D> Spin-polarized KE functional




Spin-scaling of functionals

Kinetic energy functional

In terms of the Kohn-Sham orbitals we can write

N/2
Ll =2) <¢i
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= TS :TLT, O] =F TS [O, nd

Spin-unpolarized KE functional

€bi,¢> Spin-polarized KE functional

Where the last two terms refer to the KE functionals of fully polarised systems.



Spin-scaling of functionals

Kinetic energy functional
Applying the spin-density functional for a spin-unpolarised system yields

Ts|n/2,n/2] = Ts[n/2,0] + T5[0,n/2]
=7 [n/Q, ()] Since the KE is spin-independent
= T7{[n

1
In other words, T[n/2,0| = §T§O) n|

We have derived a general property of the functional albeit by considering a special case. This
gives us the scaling relation




Spin-scaling of functionals

Kinetic energy functional
As an example consider the Thomas-Fermi KE functional

TO)n] = Cf/n(r)gd?’fr'

The spin-polarised functional is then

Tilny,ny] = 25CF (/nT(r)gdf”rJr/m(r)?d?)r)



Spin-scaling of functionals

Exchange-correlation energy functional

First we split up the Exc into an exchange and a correlation functional.
Ezelng, ny| = Eg|ng, ny| + Eelng, ny|

Similar considerations as the KE functional can be applied to the 71(z, ') Z Z%

exchange functional remembering its definition (from Hartree- =l
Fock theorv) 5
1 |z, z')|? pTT(r ) =) Y (1), (r)
Ea:[nTan,] = ——/dili‘/dilﬁ = /‘ il
=1
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Spin-scaling of functionals

Exchange-correlation energy functional

This gives the following scaling relation for the exchange functional

Here ExO[n] is the spin-unpolarised functional. As an example, the local spin density
approximation for the exchange using the Dirac functional is

4

EEPlny,ny] =28, [ & (n@)] + ])

= %Cx /dgn(r :(1 et C(r))%:




