Spin-polarized DFT

Lecture 32

CHM 652 / PHY 626 Electronic Structure of Materials

Varadharajan Srinivasan Dept. Of Chemistry IISER Bhopal

Lecture Plan

- Spin density as a variable
- Spin-polarized systems
- Spin-restricted vs unrestricted Kohn-Sham systems
- Spin-scaling of functionals

Spin Density as a Variable

In principle, the density (spineless) is the basic variable in DFT. However, in some applications it is quite useful to think of this arising from two contributions.

$$n(\mathbf{r}) = n_{\uparrow}(\mathbf{r}) + n_{\downarrow}(\mathbf{r})$$

$$n_{\uparrow/\downarrow}(\mathbf{r}) = n(\mathbf{r}, \sigma = \pm \frac{1}{2})$$

So that each spin-density is allowed to vary subject to the normalisation of their sum to *N*. This makes the energy a functional of both.

 $E \equiv E[n_{\uparrow}, n_{\downarrow}]$

The H-K Theorems can easily be reformulated in terms of the spin-density functionals.

$$\begin{split} E_0 &= \min_{\rho} E[\rho] = \min_{\rho} \left\{ q_{\text{e}} \int \rho(\textbf{\textit{r}}) \textit{\textit{v}}_{\text{nuc}}(\textbf{\textit{r}}) \; \mathsf{d}^3 \textit{\textit{r}} + \min_{\Psi \to \rho} \left\langle \Psi \middle| \hat{\textit{T}} + \hat{\textit{V}}_{\text{ee}} \middle| \Psi \right\rangle \right\} \\ &= \min_{\rho} \left\{ q_{\text{e}} \int \rho(\textbf{\textit{r}}) \textit{\textit{v}}_{\text{nuc}}(\textbf{\textit{r}}) \; \mathsf{d}^3 \textit{\textit{r}} + \min_{\rho^{\alpha}, \rho^{\beta} \to \rho} \left[\min_{\Psi \to \rho^{\alpha}, \rho^{\beta}} \left\langle \Psi \middle| \hat{\textit{T}} + \hat{\textit{V}}_{\text{ee}} \middle| \Psi \right\rangle \right] \right\} \end{split}$$

Spin-polarized systems

When the ground-state of an electronic system corresponds to

$$n_{\uparrow}(\mathbf{r}) \neq n_{\downarrow}(\mathbf{r})$$

The system is said to be spin-polarized or, since this is often the case, magnetised.

We define the spin-polarisation as

Along with n(r), this variable now can describe the energy functionals.

$$E \equiv E[n_{\uparrow}, n_{\downarrow}] \equiv E[n, \zeta]$$

Spin-restricted vs. Unrestricted KS systems

It can be shown that an analogous treatment yields the Spin-polarized KS equations

$$\left(\frac{-\nabla^{2}}{2} + v_{s}^{\uparrow}(\mathbf{r})\right)\phi_{i,\uparrow} = \epsilon_{i,\uparrow}\phi_{i,\uparrow}$$

$$\left(\frac{-\nabla^{2}}{2} + v_{s}^{\downarrow}(\mathbf{r})\right)\phi_{i,\downarrow} = \epsilon_{i,\downarrow}\phi_{i,\downarrow}$$

$$v_{s}^{\tau}(\mathbf{r}) = v(\mathbf{r}) + v_{H}(\mathbf{r}) + v_{xc}^{\tau}[n_{\uparrow}, n_{\downarrow}](\mathbf{r})$$

$$v_{xc}^{\tau}[n_{\uparrow}, n_{\downarrow}](\mathbf{r}) = \frac{\delta E_{xc}[n_{\uparrow}, n_{\downarrow}]}{\delta n_{\tau}(\mathbf{r})}$$

Spin-restricted vs. Unrestricted KS systems

The polarised and unpolarised equations can be connected but are not the same.

$T[a] = \min_{i} /W_i \hat{T} W_i $	
$T_{s}[ho] = \min_{\Psi_{s} ightarrow ho} \langle \Psi_{s} \hat{T} \Psi_{s} angle$	$T_{s}^{(u)}[ho, Q] = \min_{\Psi_{s}^{(u)} ightarrow ho, Q} ig\langle \Psi_{s}^{(u)} ig \hat{T} ig \Psi_{s}^{(u)} ig angle$
$F_{HK}[ho, Q] = T_{s}[ho] + J[ho] + E_{xc}[ho, Q]$	$F_{HK}[ho, Q] = T_{s}^{(u)}[ho, Q] + J[ho] + E_{xc}^{(u)}[ho, Q]$
$ extstyle E_{ extstyle $	$ extstyle E_{ extstyle xc}^{(u)}[ho, extstyle Q] = extstyle F_{ extstyle HK}[ho, extstyle Q] - extstyle T_{ extstyle s}^{(u)}[ho, extstyle Q] - J[ho]$
$m{v}_{ extsf{xc}}[ho] = rac{1}{m{q}_e} rac{\delta m{E}_{ extsf{xc}}[ho, m{Q}]}{\delta ho(m{r})}$	$m{v}_{ ext{xc}}^{ ext{tot}}[ho, m{Q}] = rac{1}{m{q}_e} rac{\delta m{E}_{ ext{xc}}^{(ext{u})}[ho, m{Q}]}{\delta ho(m{r})}$
	$F_{ extsf{HK}}[ho,Q]=T_{ extsf{s}}[ho]+J[ho]+E_{ extsf{xc}}[ho,Q]$ $E_{ extsf{xc}}[ho,Q]=F_{ extsf{HK}}[ho,Q]-T_{ extsf{s}}[ho]-J[ho]$

Spin-restricted vs. Unrestricted KS systems

Spin-restricted or polarised calculations become essential in some cases.

Table 1. Comparison of the spin-restricted and spin-unrestricted
formulations of KS-DFT. "Correct" indicates that the quantity calculated
for the noninteracting reference system agrees with the corresponding
one of the fully interacting system.

	Spin-restricted KS-DFT	Spin-unrestricted KS-DFT
Correct $\rho_s(\mathbf{r})$?	Yes	Yes
Correct $Q_s(\mathbf{r})$?	No	Yes
Ψ_s is eigenfunction of $\hat{\mathbf{S}}^2$?	Yes	No
Correct $\langle \hat{\mathbf{S}}^2 \rangle$?	Maybe	No
Ψ_s is eigenfunction of $\hat{S_z}$?	Yes	Yes
Correct $\langle \hat{S_z} \rangle$?	Maybe	Yes

Int. J. Quantum Chemistry 2012, 112, 3661-3684.

Kinetic energy functional

We first note that by their very definitions the kinetic energy functionals for the spin-unpolarised and the spin-polarised cases are different.

$$T_s^{(0)}[n] = \min_{\Psi_D \to n} \left\langle \Psi_D \left| \hat{T} \right| \Psi_D \right\rangle \qquad \text{Spin-unpolarized KE functional}$$

$$T_s[n_\uparrow, n_\downarrow] = \min_{\Psi_D \to n_\uparrow, \downarrow} \left\langle \Psi_D \left| \hat{T} \right| \Psi_D \right\rangle \qquad \text{Spin-polarized KE functional}$$

$$T_s^{(0)}[n] \neq T_s[n_\uparrow, n_\downarrow]$$

Kinetic energy functional

In terms of the Kohn-Sham orbitals we can write

$$T_s^{(0)}[n] = 2\sum_{i=1}^{N/2} \left\langle \phi_i \left| \frac{-\nabla^2}{2} \right| \phi_i \right\rangle$$
 Spin-unpolarized KE functional
$$T_s[n_\uparrow, n_\downarrow] = \sum_{i=1}^{N_\uparrow} \left\langle \phi_{i,\uparrow} \left| \frac{-\nabla^2}{2} \right| \phi_{i,\uparrow} \right\rangle + \sum_{i=1}^{N_\downarrow} \left\langle \phi_{i,\downarrow} \left| \frac{-\nabla^2}{2} \right| \phi_{i,\downarrow} \right\rangle$$
 Spin-polarized KE functional
$$\equiv T_s[n_\uparrow, 0] + T_s[0, n_\downarrow]$$

Where the last two terms refer to the KE functionals of fully polarised systems.

Kinetic energy functional

Applying the spin-density functional for a spin-unpolarised system yields

$$T_s[n/2,n/2] = T_s[n/2,0] + T_s[0,n/2]$$

$$= 2T_s[n/2,0]$$
 Since the KE is spin-independent
$$= T_s^{(0)}[n]$$

In other words, $T_s[n/2,0]=rac{1}{2}T_s^{(0)}[n]$

We have derived a general property of the functional albeit by considering a special case. This gives us the scaling relation

$$T_s[n_{\uparrow}, n_{\downarrow}] = \frac{1}{2} \left(T_s^{(0)}[2n_{\uparrow}] + T_s^{(0)}[2n_{\downarrow}] \right)$$

Kinetic energy functional

As an example consider the Thomas-Fermi KE functional

$$T_s^{(0)}[n] = C_f \int n(\mathbf{r})^{\frac{5}{3}} d^3r$$

The spin-polarised functional is then

$$T_s[n_{\uparrow}, n_{\downarrow}] = 2^{\frac{2}{3}} C_F \left(\int n_{\uparrow}(\mathbf{r})^{\frac{5}{3}} d^3 r + \int n_{\downarrow}(\mathbf{r})^{\frac{5}{3}} d^3 r \right)$$

Exchange-correlation energy functional

First we split up the E_{xc} into an exchange and a correlation functional.

$$E_{xc}[n_{\uparrow}, n_{\downarrow}] = E_x[n_{\uparrow}, n_{\downarrow}] + E_c[n_{\uparrow}, n_{\downarrow}]$$

Similar considerations as the KE functional can be applied to the exchange functional remembering its definition (from Hartree-Fock theory)

$$E_{x}[n_{\uparrow}, n_{\downarrow}] = -\frac{1}{2} \int dx \int dx' \frac{|\gamma_{1}(x, x')|^{2}}{|\mathbf{r} - \mathbf{r}'|} \qquad \qquad \rho^{\tau\tau}(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \phi^{\tau\tau}(\mathbf{r}, \mathbf{r}') = \sum_{i=1$$

$$\gamma_1(x, x') = \sum_{i=1}^{N} \sum_{j=1}^{N} \psi_i(x)\psi_j(x')$$

$$\rho^{\tau\tau}(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^{N_{\tau}} \sum_{j=1}^{N_{\tau}} \phi_{i,\tau}(\mathbf{r})\phi_{j,\tau}(\mathbf{r}')$$

Exchange-correlation energy functional

This gives the following scaling relation for the exchange functional

$$E_x[n_{\uparrow}, n_{\downarrow}] = \frac{1}{2} \left(E_x^{(0)}[2n_{\uparrow}] + E_x^{(0)}[n_{\downarrow}] \right)$$
$$E_x^{(0)} = E_x[n/2, n/2]$$

Here $E_{x}^{(0)}[n]$ is the spin-unpolarised functional. As an example, the *local spin density* approximation for the exchange using the Dirac functional is

$$E_x^{LSD}[n_{\uparrow}, n_{\downarrow}] = 2^{\frac{1}{3}} C_x \int d^3 r \left(n(\mathbf{r})_{\uparrow}^{\frac{4}{3}} + (\mathbf{r})_{\downarrow}^{\frac{4}{3}} \right)$$

$$= \frac{1}{2} C_x \int d^3 n(\mathbf{r} \left[(1 + \zeta(\mathbf{r}))^{\frac{4}{3}} + (1 - \zeta(\mathbf{r}))^{\frac{4}{3}} \right]$$