
1 Tensor Product states

Let V1 and V2 be two vector spaces with |ψ〉 ∈ V1 and |φ〉 ∈ V2. We define a tensor product of V1 and V2 as

V = V1 ⊗ V2 (1)

such that
|ψ〉1 ⊗ |φ〉2 ∈ V (2)

In equation 2, the subscripts indicate the original vector space the state is from.
It can be shown that V forms a vector space if

1.

a (|ψ〉1 ⊗ |φ〉2) = (a |ψ〉)⊗ |φ〉2 = |psi〉1 ⊗ (a |phi〉2) (3)

for a ∈ C. i.e. it is linear over scalar multiplication.

2.

(|ψ1〉1 + |ψ2〉)⊗ |φ〉2 = |ψ1〉1 ⊗ |φ〉2 + |ψ2〉1 ⊗ |φ〉2 (4)

i.e. distributive over vector addition.

In equation 4, the resulting vector is also in V to ensure closure under addition.

2 Basis states in tensor product spaces

If {|ui〉} and {|vj〉} are sets of orthonormal bases for V1 and V2, respectively, then
{
|ui〉1 ⊗ |vj〉2

}
forms an

orthonormal basis set for V = V1 ⊗ V2. Consider a state |ψ〉1 ⊗ |φ〉2 ∈ V . Then, using the definition of the
basis sets of the individual spaces, we can write

|ψ〉1 ⊗ |φ〉2 =

(∑
i

ci |ui〉1

)
⊗

∑
j

dj |vj〉2


=
∑
i,j

cidj |ψ〉1 ⊗ |φ〉2 (5)

i.e. vectors in V can be expanded in terms of
{
|ui〉1 ⊗ |vj〉2

}
.

Thus any general |Ψ〉 ∈ V can be written as

|Ψ〉 =
∑
i,j

ai,j |ui〉1 ⊗ |vj〉2 (6)

However, it is not always necessary that this can be “factored” into the tensor product of two vectors from
V1 and V2. i.e. in general,

|Ψ〉 6= |ψ〉1 ⊗ |φ〉2 (7)

for any |ψ〉 ∈ V1 and any |φ〉 ∈ V2. States that cannot be “factored” in this way are entangled in quantum
mechanics.

3 Inner Products

Consider |ψ〉 , |ψ′〉 ∈ V1 and |φ〉 , |φ′〉 ∈ V2. This implies |ψ〉1⊗ |φ〉2 , |ψ′〉1⊗ |φ′〉2 ∈ V . The inner products in
the Tensor Product spaces are defined as

(1〈ψ| ⊗ 2〈φ|) · (|ψ
′〉1 ⊗ |φ

′〉2) = 1〈ψ|ψ
′〉1 2〈φ|φ

′〉2 (8)

This definition can also be used to show that the basis states used in equation 6 are also orthonormal if the
original bases in V1 and V2 are orthonormal.
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4 Operators

Consider Â1 on V1, B̂2 on V2 we define(
Â1 ⊗ B̂2

)
(|ψ〉1 ⊗ |φ〉2) =

(
Â1 |ψ〉1

)
⊗
(
B̂2 |φ〉2

)
(9)

Consider the general state given in equation 6. Then,(
Â2 ⊗ B̂2

)
|Ψ〉 =

∑
i,j

ai,j

(
Â1 |ui〉1

)
⊗
(
B̂2 |vj〉2

)
(10)

Suppose we want to define an operator, Â, that acts only on the V1 part of the state |Ψ〉 ∈ V . We can define
it as Â1 ⊗ 1̂2, or simply write it as Â1. We will often use the latter notation for simplicity. We interpret its
action as below.

Â1 ⊗ 1̂2 |ui〉1 ⊗ |vj〉2 =
(
Â1 |ui〉1

)
⊗
(
1̂2 |vj〉2

)
=
(
Â1 |ui〉1

)
⊗ |vj〉2 (11)

A similar definition also holds for B̂2 = 1̂2 ⊗ B̂2.
The following notations are often used equivalently.

|ψ〉1 ⊗ |φ〉2 −→ |ψ〉1 |φ〉2 −→ |ψ, φ〉 (12)

(13)

Examples of such states are

1. Position kets of a particle in 3-dimensions – |r〉 = |x〉 ⊗ |y〉 ⊗ |z〉.

2. A spin-orbital state of an electron – |ψn,m〉 = |φn(r)〉 ⊗ |χm(σ)〉
Also,

Â1 ⊗ B̂2 −→ Â1B̂2 (14)

Examples of such operators are

1. Kinetic energy operator of particle in 3-dimensions– T̂ =
p̂21
2 +

p̂22
2 +

p̂23
2 .

2. Spin-orbit coupling operator ĤSO = ζ ~̂L · ~̂S (orbital and spin angular momentum operators act on
different spaces).

5 Permutations

5.1 Permutation operators

Permutations are defined as rearrangements or elements in a set. We define such an operator’s action on
tensor product states as

P̂mnp |ui〉1 |uj〉2 |uk〉3 = |ui〉m |uj〉n |uk〉p (15)

where m 6= n 6= p and they borrow values from 1, 2, 3. For example,

P̂231 |ui〉1 |uj〉2 |uk〉3 = |ui〉2 |uj〉3 |uk〉1 (16)

The permutation could equivalently be performed on the states, keeping the space index in the original order.
That is,

P̂231 |ui〉1 |uj〉2 |uk〉3 = |uk〉1 |ui〉2 |uj〉3 (17)

Both definitions are equivalent and represent the freedom in ordering spaces in a tensor product. In what
follows, we will generically denote permutations as P̂α. Note that a set of N items can be permuted in N !
ways. Also note that P123..n = 1̂, as it leaves the original order unchanged.
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5.2 Transpositions

Permutations that exchange 2 items, leaving the others unchanged, are termed transpositions. E.g., for
N = 3, P̂132, P̂213, P̂321 are transpositions (or pair permutations).
Transpositions (denoted below as T̂ν) can be shown to be satisfy

T̂ν = T̂ †ν Hermitian (18)

T̂ 2
ν = 1̂ Involutory (19)

T̂ν T̂
†
ν = T̂ †ν T̂ν = 1̂ Unitary (20)

Q. Prove the above relations.
Theorem 1: Every permutation can be written as a product of transpositions. i.e. P̂α = T̂α1

T̂α2
. . . T̂αn

.

An example for N = 3 is P̂312 = P̂132P̂213. Note that the terms on the right of this equation are transposi-
tions. However, there are multiple ways of decomposing a permutation into transpositions.

Theorem 2: The number of transpositions involved in achieving a permutation is always either even or odd
and decides the parity of the permutation. A given permutation has a fixed parity, regardless of the choice
of the sequence of transpositions made to achieve it.

In particular, we can assign a number ηα for every permutation α of a set, such that ηα = ±1, where the
plus sign indicates even and minus sign odd parity.
Using these theorems, the following maybe shown.

1. P̂−1α = P̂α

2. A permutation and its hermitian adjoint have the same parity.

3. P̂α 6= P̂ †α in general.

It is straightforward to see that the set of all permutations of the tensor products form a (non-abelian) group.
In particular, there is an identity element (P̂123..n), product of any two permutations also is a permutation
(closure), and every permutation has an inverse which also exists in the same group. This group is called
the symmetric group.

Rearrangement Theorem: Product of a given permutation hatPα with each member of the symmetric group
results in only a rearrangement of the members without repeating any one of them.
A special consequence of this is that

P̂α

∑
β

P̂β

 =

∑
β

P̂β

 (21)

Q. Prove this result.
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