1 Tensor Product states

Let V1 and V5 be two vector spaces with 1)) € V; and |¢) € Va. We define a tensor product of V; and V5 as
V=Vl (1)

such that
V), ®|g)y €V (2)

In equation 2, the subscripts indicate the original vector space the state is from.
It can be shown that V forms a vector space if

1.
a (), ®1d)y) = (aly)) @ [d)y = |psi); @ (a|phi),) 3)

for a € C. i.e. it is linear over scalar multiplication.

([1) + [¥2)) @ |#)y = [¥1)1 @ D)y + |12); @ [@), (4)
i.e. distributive over vector addition.

In equation 4, the resulting vector is also in V' to ensure closure under addition.

2 Basis states in tensor product spaces

If {|u;)} and {|v;)} are sets of orthonormal bases for V; and Vz, respectively, then {|u;); ® |v;),} forms an
orthonormal basis set for V' = V; ® V. Consider a state |¢)); ® |¢), € V. Then, using the definition of the
basis sets of the individual spaces, we can write

|'(/)>1 ® |¢>2 = (Z Ci ui>1> ® Zdj |vj>2
= Zcidj |1/1>1 ® |¢>2 (5)

,J
i.e. vectors in V can be expanded in terms of {|u;); ® [v;), }.
Thus any general |¥) € V can be written as

W) =) ai;
i

However, it is not always necessary that this can be “factored” into the tensor product of two vectors from
V1 and V5. i.e. in general,

ui)y @ [vj) (6)

(W) # [¥), ©16), (7)

for any |¢) € V7 and any |¢) € V,. States that cannot be “factored” in this way are entangled in quantum
mechanics.

3 Inner Products

Consider [¢), [¢") € Vi and |9) ,|¢") € Va. This implies [¢); ® |¢),, [¢'); ® |¢'), € V. The inner products in
the Tensor Product spaces are defined as

(1 (Y] ® 5(9]) - (|¢/>1 ® ‘¢/>2> = 1<¢|1/’/>1 2<¢|¢/>2 (8)

This definition can also be used to show that the basis states used in equation 6 are also orthonormal if the
original bases in V; and V5 are orthonormal.



4 Operators
Consider A; on Vi, B, on Vs we define

(Av@ B2) () @19),) = (Aufv),) @ (Bz o)) ©)
Consider the general state given in equation 6. Then,

(Az ® Bz) ) = Zai,j (Al |Ui>1> ® (32 |vj>2) (10)

Suppose we want to define an operator, A, that acts only on the V; part of the state |¥) € V. We can define
it as A1 ® 15, or simply write it as A;. We will often use the latter notation for simplicity. We interpret its
action as below.

1211 @1, [ui)y @ [vj)y = (Al |u1>1) ® (ﬂ2 |Uj>2)

= (A fus)y) @ o), (11)
A similar definition also holds for Bg =1, ® f?g.
The following notations are often used equivalently.
W}>1 ® |¢>2 — |1/J>1 |¢>2 — |¢a¢> (12)
(13)

Examples of such states are
1. Position kets of a particle in 3-dimensions — |r) = |z) ® |y) ® |2).

2. A spin-orbital state of an electron — [ty ) = |dn(r)) @ |xm(0))

Also,
1211 (2] BQ — A1B2 (14)
Examples of such operators are
~ ~2 ~2 ~2
1. Kinetic energy operator of particle in 3-dimensions— T = %1 + %2 + %3.

2. Spin-orbit coupling operator Hgo = Qf .S (orbital and spin angular momentum operators act on
different spaces).

5 Permutations

5.1 Permutation operators

Permutations are defined as rearrangements or elements in a set. We define such an operator’s action on
tensor product states as

Prpp [y [wg)y [uk)s = i)y, [u), |“k>p (15)
where m # n # p and they borrow values from 1,2, 3. For example,
Pysy i)y [t)g [ur)s = |ui)s [uj) s [ue)y (16)

The permutation could equivalently be performed on the states, keeping the space index in the original order.
That is,

Poga i)y |ug)y [ur)y = lur)y [wi)y [us), (17)

Both definitions are equivalent and represent the freedom in ordering spaces in a tensor product. In what
follows, we will generically denote permutations as P,. Note that a set of N items can be permuted in N!
ways. Also note that Pjo3 ., = 1, as it leaves the original order unchanged.



5.2 Transpositions

Permutations that exchange 2 items, leaving the others unchanged, are termed transpositions. E.g., for
N =3, Pi32, Py13, P321 are transpositions (or pair permutations).
Transpositions (denoted below as T),) can be shown to be satisfy

[, =T/ Hermitian (18)
2 =1 Involutory (19)
T,T5 =TiT, =1 Unitary (20)

Q. Prove the above relations. . o .
Theorem 1: Every permutation can be written as a product of transpositions. i.e. Py = To, 1o, - Ta,, -
An example for N = 3 is ]5312 = ]5132}5213. Note that the terms on the right of this equation are transposi-
tions. However, there are multiple ways of decomposing a permutation into transpositions.

Theorem 2: The number of transpositions involved in achieving a permutation is always either even or odd
and decides the parity of the permutation. A given permutation has a fixed parity, regardless of the choice
of the sequence of transpositions made to achieve it.

In particular, we can assign a number 7, for every permutation « of a set, such that n, = +1, where the
plus sign indicates even and minus sign odd parity.
Using these theorems, the following maybe shown.

1. P;' =P,
2. A permutation and its hermitian adjoint have the same parity.
3. P, # ]5(1 in general.

It is straightforward to see that the set of all permutations of the tensor products form a (non-abelian) group.
In particular, there is an identity element (]5123__”), product of any two permutations also is a permutation
(closure), and every permutation has an inverse which also exists in the same group. This group is called
the symmetric group.

Rearrangement Theorem: Product of a given permutation hatP, with each member of the symmetric group
results in only a rearrangement of the members without repeating any one of them.
A special consequence of this is that

Pa | D> Ps|=1D_Ps (21)
3 3

Q. Prove this result.



